Главная · Утилиты · Что дает стабилизатор напряжения. Грамотный выбор стабилизатора напряжения. Использование и преимущества серво стабилизатора напряжения

Что дает стабилизатор напряжения. Грамотный выбор стабилизатора напряжения. Использование и преимущества серво стабилизатора напряжения

По большей части проблемы со скачками напряжения наблюдаются в сельской местности, но бывают и в городах. В зависимости от времени суток может менять показатели в пределах даже 20 ватт. Скачки часто являются следствием использования соседом мощного оборудования — возникают во время запуска оборудования с двигателем или мощного кухонного котла. Во время запуска мощного оборудования в доли секунды напряжение может опуститься с 220 до 190 ватт, а затем вернуться обратно. Такие резкие скачки могут отрицательно влиять на бытовую технику и освещение, лампочки часто из-за этого перегорают. О том что делать в таких ситуациях и пойдет речь в этой статье.

Действующие нормы предусматривают отклонения в пределах ±10%. Исходя из этого минимальное напряжение может составить 198 В а максимальное 242 В, то есть разница между крайними точками может достигать 44 В. Это довольно много и заметно, по миганию ламп и работе електродвигателей. По работе электроники, как правило, этого не заметно, так как там в основном используются импульсные блоки питания, имеющие довольно широкий диапазон входного напряжения и сохраняющие свои параметры питания на том же уровне.

Однако в доме есть много устройств, которым не допустимы такие колебания напряжения. У большого числа бытовой техники выходят из строя программаторы, замена которых обходится в крупную сумму. А если представить на момент что во всем доме выйдут из строя светодиодные лампы, в таком случае также необходимо будет заплатить приличную сумму на замену.

Как себя обезопасить?

Исходя из вышесказанного появляется вполне закономерный вопрос — как себя обезопасить? Что можно использовать чтобы напряжение в сети всегда было на уровне 220 В и не прыгало то вниз то вверх? К счастью, вы можете защитить свое оборудование от резких перепадов напряжения. Самым простым способом является использование стабилизатора переменного напряжения 220 В. Устройство выступает в различных вариантах мощности, а его принцип действия довольно прост.

По сути стабилизатор напряжения представляет собой не что иное как трансформатор. Система управления с помощью реле передает соответствующее напряжение на выход. В результате напряжение усиливается или понижается. Все происходит довольно быстро, обычно в течение 4 мс. В самых дешевых решениях реакция немного занижена, поэтому выходное напряжение также может иметь определенный диапазон перепада, но он небольшой, например, от 215 до 240 В. Дешевые модели не идеальные, но в любом случае безопаснее чем падение ниже 198 В или поднятие выше 242 В.

Топ 3 лучших стабилизаторов напряжения для дома

Ниже вы найдете топ три стабилизаторов напряжения, которые завоевали самую большую популярность на рынке.

Стабилизатор напряжения LVT АСН-350 С

Предназначен для защиты чувствительных устройств от перепада напряжения в сети, таких как лампы освещения и многих других. Стабильно выдает 220 В. Кроме того, данный стабильного питания защищает подключенное устройство от внезапного повышения или понижения напряжения сети (больше, чем 275 В или меньшей чем 155 В) прекратив подачу питания.

Технические характеристики LVT АСН-350 С :

  • входное напряжение: 155V — 270 В;
  • выходное напряжение: 220 В (+/-10%);
  • выходная частота: 50 гц;
  • выходная мощность: 350 В;
  • вес: 2 кг;
  • размеры: 125 x 80 x 192 мм.

Стабилизатор ДИА-Н СН-3000-м

Характеризуется мощностью 3000 ВТ, предназначен для домашнего использования. Успешно работает с:

  • аудио/видео оборудованием;
  • компьютером или ноутбуком;
  • периферийными устройствами (ксерокс, факс) и бытовой техникой.

Обеспечивает стабильное напряжение питания 220 В при перепадах напряжения сети от 150 В до 280 В. В случае превышения диапазона входящего тока 150-280 В, стабилизатор автоматически прекращает подачу питания.

Технические характеристики ДИА-Н СН-3000-м:

  • входящее напряжение питания: 150 В — 280 В;
  • максимальная мощность: 3000 ВТ;
  • выходное напряжение: 220В (+10%, — 10%);
  • выходная частота: 50 гц;
  • время реакции: <1 сек;
  • вес: 8 кг;
  • количество сетевых розеток, выходов: 1.

Стабилизатор напряжения Элекс Гибрид 9-1/40А v2.0

Стабилизаторы — это устройства для автоматического поддержания постоянства значения электрического напряжения на входах приёмников электрической энергии (стабилизатор напряжения) или силы тока в их цепях (стабилизатор тока) независимо от колебаний напряжения в питающей сети и величины нагрузки. Стабилизатор обеспечивает нагрузку стабилизированным напряжением только в том случае, если сетевое напряжения находится в определённых пределах. Если сетевое напряжение выйдет за эти пределы (значительные превышения напряжения, равно как его кратковременные глубокие провалы или полное отсутствие), стабилизатор отключит питаемые электроприборы и они обесточатся.

Стабилизаторы бывают одно- и трёхфазные с мощностями от 100 ВА до 250 кВА и выше.


Типы стабилизаторов Стабилизаторы бывают следующих типов:

Феррорезонансные . Были разработаны в середине 60 годов прошлого века, действие их основано на использовании явления магнитного насыщения ферромагнитных сердечников трансформаторов или дросселей. Применялись такие устройства для стабилизации напряжения питания бытовой техники (телевизор, радиоприёмник, холодильник и т.п.).

Достоинства феррорезонансных стабилизаторов: высокая точность поддержания выходного напряжения (1-3%), высокая (для того времени) скорость регулирования. Недостатки: повышенный уровень шума и зависимость качества стабилизации от величины нагрузки.

Современные феррорезонансные стабилизаторы лишены этих недостатков, но стоимость их равна или выше стоимости ИБП (Источника Бесперебойного Питания) на такую же мощность. Вследствие этого феррорезонансные стабилизаторы широкого распространения в качестве бытовых не получили.

Электромеханические . В 60-80-е годы прошлого века для регулирования напряжения применялись автотрансформаторы с ручным регулированием выходного напряжения, вследствие чего приходилось постоянно следить за прибором, показывающим выходное напряжение (стрелочный или светящаяся линейка) и, при необходимости, вручную выставлять номинальное. В настоящее время коррекция выходного напряжения осуществляется автоматически, с помощью электродвигателя с редуктором.

Достоинство таких электромеханических стабилизаторов — высокая точность поддержания выходного напряжения (2-3%). Недостатки — повышенный уровень шума (шумит двигатель, и практически постоянно, т.к. отслеживается изменение напряжения на (2-4 В) и низкая скорость регулирования из-за инерционности двигателя. При резком увеличении напряжения может кратковременно отключать нагрузку, т.к. напряжение на выходе может превысить максимально допустимое значение. При этом, в большинстве случаев, такая высокая точность не требуется, достаточно 5-7%, как указано в паспортах на самые широкораспространённые бытовые электроприборы общего назначения.

Получили распространение как дешевые бытовые стабилизаторы.

Электронные (ступенчатого регулирования) . Наиболее широкий класс стабилизаторов, обеспечивающих поддержание выходного напряжения с определенной точностью в широких пределах входного напряжения. Принцип стабилизации основан на автоматическом переключении секций трансформатора с помощью силовых ключей (реле, тиристоров, симисторов). В силу ряда достоинств, электронные стабилизаторы напряжения нашли наибольшее распространение на рынке стабилизаторов.

Достоинства: быстродействие, широкий диапазон входного напряжения, отсутствие искажения формы входного напряжения, высокое значение КПД. Недостаток — ступенчатое изменение выходного напряжения, ограничивающее точность стабилизации в пределах 0,9%-7%.

Данные стабилизаторы - оптимальное соотношение цена/качество при применении в промышленности и быту. Некоторые модели допускают возможность коррекции выходного напряжения в пределах 210-230 В.

Климатическое исполнение Климатическое исполнение большинства предлагаемых стабилизаторов IP20, они предназначены для установки в помещениях с температурой окружающей среды +5…+35°С, с относительной влажностью воздуха 35-90%, с атмосферой, не содержащей пыли, водяных брызг и т.д. Если в помещении под установку стабилизаторов температура будет опускаться ниже 0°С, возможно исполнение в корпусах с подогревом. Основные параметры и функции Диапазон входного напряжения . Наряду с точностью стабилизации, является важнейшей его характеристикой. Этот диапазон состоит из двух категорий:
  • рабочий - когда входное напряжение находится в пределах, при которых на выходе обеспечивается заявленная величина стабилизации, например 220±5%;
  • предельный - когда стабилизатор сохраняет работоспособность, но напряжение на выходе отличается от заявленной величины в большую или меньшую стороны до 15-18%). При напряжении на входе, выходящем за рамки предельного, стабилизатор отключает электроприборы, сам оставаясь подключенным к сети для контроля с возможностью подключения электроприборов вновь в работу при возвращении питающей сети в рабочий (предельный) диапазон напряжений.

Точность стабилизации выходного напряжения зависит от величины входного напряжения, если оно находится в рабочем диапазоне, то точность стабилизации составляет 0,9-5% в зависимости от модели стабилизатора.

Перегрузочная способность - способность выдерживать кратковременные перегрузки от электроприборов, имеющих высокие пусковые токи (например, электродвигатель погружного насоса, холодильника и т.п.).

Защита от перегрузки и короткого замыкания на выходе . В случае перегрузки стабилизатора, когда со стабилизатора начинает сниматься мощность на 5-50% превышающая номинальную в течение продолжительного периода времени (от 0,1сек. до 1мин. или немного более), срабатывает система защиты (время срабатывания защиты зависит от величины перегрузки), которая отключит стабилизатор и тем самым предотвратит его выход из строя. При наличии в стабилизаторе функции однократного повторного включения через 10 сек. после его отключения по перегрузке, он снова включится. Если перегрузка при повторном включении стабилизатора отсутствует, то стабилизатор продолжает штатно работать. В случае короткого замыкания в цепи подключенных к стабилизатору электроприборов, стабилизатор отключится. После чего обязательно необходимо выявить и устранить причину короткого замыкания и только потом включить стабилизатор.

Система контроля выходного напряжения . В случае выхода стабилизатора из строя или мгновенного увеличения входного напряжения такая система отключает электроприборы от стабилизатора и предотвратит их выход из строя.

Регулировка выходного напряжения . Наличие в некоторых моделях стабилизаторов возможности регулирования выходного напряжения в диапазоне 210-230В, что помогает решить одновременно несколько проблем:

  • возможно установить на выходе стабилизатора западные стандарты напряжения 230В для импортных электроприборов. Без подобной функции стабилизатор постоянно будет выходить за заданный для данных электроприборов нижний диапазон напряжения, что может вызвать сбои в их работе;
  • для ламп накаливания можно установить напряжение около 210В, что значительно увеличит срок их службы, световой же поток останется в пределах, заявленных производителем.

Автоматическое включение стабилизатора при возврате входного напряжения в установленный диапазон . Т.к. стабилизатор отключает нагрузку в случае выхода входного напряжения за установленные пределы, он должен автоматически включаться и подключать нагрузку, если входное напряжение вернулось в установленный диапазон, иначе придётся следить за сетевым напряжением, включать стабилизатор вручную.

Наличие на входе и выходе стабилизатора фильтров подавления импульсных помех . Это полезная функция, которая защитит электроприборы от помех в радиочастотном диапазоне.

Стабилизатор напряжения – это устройство, к входу которого подается напряжение с неустойчивыми или неподходящими параметрами для потребителя электроэнергии. На выводе стабилизатора напряжение уже обладает нужными (устойчивыми) параметрами, которые делают возможным снабжение электроэнергией восприимчивых к изменению вольтажа потребителей. А как работает стабилизатор напряжения, и для чего он нужен?

Стабилизация напряжения постоянного тока требуется, если входящий вольтаж слишком мал или велик для потребителя. При прохождении через поддерживающее устройство оно становится больше или меньше до нужного значения. При необходимости схема стабилизатора может быть составлена так, чтобы выводимое напряжение имело полярность, противоположную поступающему.

Линейные

Линейный стабилизатор – делитель, в который подается неустойчивое напряжение. Выходит оно уже выравненное, со стабильными характеристиками. Принцип работы заключается в постоянном изменении сопротивления для поддержания на выводе постоянного вольтажа.

Преимущества:

  • Простая конструкция с небольшим количеством деталей;
  • В работе не наблюдаются помехи.

Недостатки:

  • При большом различии входящего и выходящего вольтажа линейный преобразователь тока выдает слабый КПД, поскольку большая часть вырабатываемой мощности превращается в тепло и рассеивается на регуляторе сопротивления. Поэтому появляется необходимость в установке контролирующего устройства на радиаторе достаточного размера.

Параметрический со стабилитроном, параллельный

Для схемы стабилизирующего ток устройства, в котором контролирующий работу элемент расположен параллельно нагруженной ветви, подходят газоразрядные и полупроводниковые стабилитроны.

Через стабилитрон должен проходить ток, превышающий от 3 до 10 раз ток в R L . Поэтому механизм подходит для выравнивания напряжения только в механизмах со слабым током. Обычно его используют как составной элемент преобразователей тока с более сложной начинкой.

Последовательный с биполярным транзистором

Принцип работы стабилизатора напряжения можно рассмотреть с помощью схемы устройства.

Видно, что она объединяет в себе два элемента:

  1. Уже известный нам параллельный параметрический стабилизатор на стабилитроне;
  2. Биполярный транзистор, который увеличивает ток с постоянным коэффициентом. Его еще называют эмиттерным повторителем.

Выводимое напряжение определяется по формуле: Uout = Uz - Ube. Uz – напряжение, поддерживаемое стабилитроном. Оно почти не зависит от тока, идущего через стабилитрон. Ube – разница вольтажа выходящего и стабилизируемого стабилитроном. Она почти не зависит от тока, который подается на p-n переход. Однако разница зависит от природы вещества (для кремния Ube – 0,6 В, для германия – 0,25 В). Именно из-за сравнительной независимости этих значений выводимое напряжение устойчиво.

При прохождении через трехслойный транзистор напряжение на выводе стабилизатора увеличивается. Если использование одного транзистора не удовлетворяет запросам потребителя энергии, то берется конструкция из нескольких транзисторов для увеличения тока до нужного значения.

Последовательный компенсационный на операционном усилителе

Компенсационный – значит с обратной связью. В этом стабилизаторе выводимое напряжение всегда сопоставляется с тем, что принято за эталон. Отличие между ними необходимо для формирования и передачи сигнала механизму, контролирующему вольтаж.

С резистора R2 снимается часть выходящего напряжения Uout, которая сравнивается с Uz (напряжение опорное) на стабилитроне, обозначенном на схеме как D1. Полученная разность проходит через операционный усилитель (на схеме U1) и передается управляющему транзистору.

Устойчивая работа обеспечивается при петлевом сдвиге фаз, который приближается к 180°+n*360°. Поскольку часть выходящего напряжения подается на усилитель, то последний сдвигает фазу на развернутый угол. Транзистор, включенный по схеме усилителя тока, не вызывает сдвига фаз. При этом петлевой сдвиг остается равным 180 о.

Импульсный

Электрический ток с неустойчивыми параметрами посредством коротких импульсов подается на накопительное устройство стабилизатора (в его роли выступает индуктивная катушка или конденсатор). Запасенная электроэнергия впоследствии выходит в нагрузку уже с другими параметрами. Возможно два варианта стабилизации:

  1. Путем управления продолжительностью импульсов и пауз между ними (принцип широтно-импульсной модуляции );
  2. Путем сравнивания выходящего напряжения с минимально и максимально допустимыми значениями. Если оно выше максимального, то накопитель перестает накапливать энергию и разряжается. Тогда на выводе напряжение становится меньше минимального. При этом накопитель снова начинает работать (принцип двухпозиционного управления ).

В зависимости от схемы импульсный выравниватель тока может преобразовывать напряжение до достижения разных результатов. Поэтому различают его разновидности:

  • Понижающий (напряжение на выводе меньше, чем на вводе, но с той же полярностью);
  • Повышающий (напряжение на выводе больше, чем на вводе, но с той же полярностью);
  • Понижающе-повышающий (напряжение на выводе может быть больше или меньше, чем на вводе, но полярность та же). Устройства применяется, когда U на вводе и выводе сильно отличаются, но на вводе возможны нежелательные отклонения в большую или меньшую сторону;
  • Инвертирующий (напряжение на выводе больше или меньше, чем на вводе, полярность противоположная).

Преимущества:

  • Низкие потери энергии.

Недостатки:

  • Импульсные помехи на выводе.

Стабилизаторы переменного напряжения

Стабилизатор переменного напряжения предназначен для поддержания постоянного тока на выводе, независимо от того, какими параметрами он обладает на вводе. Выводимое напряжение должно описываться идеальной синусоидой даже при резких скачках, падении или даже обрыве на вводе. Различают накопительные и корректирующие стабилизирующие устройства.

Стабилизаторы-накопители

Это устройства, которые сначала накапливают электроэнергию от входящего источника питания тока. Затем энергия генерируется заново, но уже с постоянными характеристиками, ток направляется к выходу.

Система «двигатель – генератор»

Принцип работы заключается в преобразовании электрической энергии в кинетическую с помощью электродвигателя. Затем генератор обратно преобразует ее из кинетической в электрическую, но ток уже обладает конкретными и постоянными характеристиками.

Клюевой элемент системы – маховик, который накапливает в себе кинетическую энергию и стабилизирует выводимое напряжение. Маховик жестко соединен с подвижными частями двигателя и генератора. Он очень массивный и обладает большой инерцией, сохраняющей скорость, которая зависит только от фазной частоты. Поскольку скорость вращения маховика относительно постоянна, напряжение остается постоянным даже при значительных провалах и скачках на вводе.

Система «двигатель-генератор» подходит для напряжения с тремя фазами. Сегодня она используется только на стратегических объектах. Ранее применялась для запитывания быстродействующих электронных вычислительных машин.

Феррорезонансный

Устройство включает в себя:

  • Индуктивная катушка с насыщенным сердечником;
  • Катушка индуктивности с ненасыщенным сердечником (внутри есть магнитный зазор);
  • Конденсатор.

Поскольку катушка с насыщенным сердечником имеет постоянное напряжение, независимо от тока, который по нему идет, путем подбора характеристик второй катушки и конденсатора можно добиться стабилизации напряжения в нужных пределах.

Принцип действия полученного механизма можно сравнить с качелями, которые трудно резко остановить или заставить качаться с большей скоростью. Даже нет необходимости каждый раз подталкивать качели, потому что колебательное движение – инерционный процесс. Поэтому допустимы сильные провалы и обрывы напряжения. Частоту колебаний тоже трудно поменять, поскольку у системы собственная установившаяся частота.

Феррорезонансные стабилизаторы были популярными в советские времена. Их использовали для снабжения электроэнергией телевизоров.

Инверторный

В схему инверторного стабилизатора включаются:

  • Входные фильтры;
  • Выпрямитель с устройством, изменяющим мощностной коэффициент;
  • Конденсаторы;
  • Микроконтроллер;
  • Преобразователь напряжения (из постоянного в переменное).

Принцип работы основан на двух процессах:

  1. Сначала входящий переменный ток преобразуется в постоянный при проходе через корректор и выпрямитель. Энергия накапливается в конденсаторах;
  2. Затем постоянный ток преобразуется в переменный выходящий. Из конденсатора ток идет к инвертору, который трансформирует ток в переменный, но с неизменными параметрами.

Пример (принцип работы стабилизатора напряжения 220В): на вводе напряжение меньше или больше 220В, его форма не соответствует синусоиде. После прохождения через выпрямитель и корректор ток становится постоянным, форма напряжения – идеальная синусоида. После прохождения через инвертор к выходу устремляется переменный синусоидальный ток с частотой 50 Гц и напряжением 220В.

Благодаря высокой отдаче механизма (КПД близко к 100%) такой стабилизатор используют для дорого оборудования медицинского и спортивного назначения.

ИБП

Источники бесперебойного питания по конструкции и принципу действия аналогичны инверторным преобразующим устройствам. Сходство заканчивается на том, что накопление электроэнергии происходит не в конденсаторе, а в аккумуляторе, из которого выходит ток с нужными для потребителя параметрами.

ИБП необходимы для запитывания вычислительной техники, поскольку они не только стабилизируют напряжение, но и исключают сбой работы программ при аварийном отключении. Пример: если произойдет обрыв вольтажа, то накопленной в аккумуляторе энергии хватит для правильного завершения работы компьютера. Все данные будут сохранены, а компьютерная «начинка» останется целой.

Корректирующие

К корректирующим стабилизаторам относят преобразователи напряжения, которые изменяют его за счет добавочного потенциала, которого не доставало для получения необходимого для потребителя значения.

Электромагнитный

Другое название – ферромагнитный. От феррорезонансного отличается отсутствием конденсатора, более низкой мощностью и большими размерами.

Если линейный реактор (на схеме L1) включить последовательно с резистором Rh, а нелинейный реактор L2 включить параллельно Rh, то как бы ни менялось входящее напряжение, выводимое будет постоянным. Это обусловлено работой второго реактора в режиме насыщения, отчего вольтаж на нем не меняется при меняющемся токе. В связи с этим меняющееся напряжение на вводе не оказывает влияние на значение на выводе. Оно лишь перераспределяется между L1 и L2. Прирост от входящего значения полностью уходит на L1.

Электромеханический и электродинамический

Это два схожих по конструкции вида стабилизаторов, представляющих собой вольтодобавочный трансформатор. В них напряжение преобразуется за счет перемещения узла, снимающего ток у входа, по трансформаторной обмотке. В результате коэффициент стабилизации меняется мягко до той величины, которая нужна для выходящего напряжения.

В электромеханическом выравнивателе управление реализовывается щетками, которые быстро изнашиваются, поскольку это подвижные элементы. Снизить изнашиваемость удается в электродинамическом аналоге, в котором щетки заменены роликом.

Это единственные преобразователи тока, которые не только обеспечивают гладкую его трансформацию, но и формируют из него синусоиду. На выводе значение относительно неизменно, максимальное отклонение от номинала не превышает 3%. Такая подача энергии оптимальна для бытовой и производственной техники.

Преимущества:

  • Широкий диапазон входящего напряжения (130-260В);
  • Отсутствие помех на выводе;
  • Возможность перегрузки до 200% на полсекунды;
  • Бесшумная работа (если нет перегрузки);
  • Отличная помехоустойчивость.

Недостатки:

  • Нельзя применять при морозах (конструкция может работать только при непродолжительных легких заморозках и до 40 градусов тепла);
  • Низкая скорость стабилизации (проблема решается путем добавления количества щеток).

К преимуществам электродинамического аналога стоит отнести его способность работать при отрицательных температурах (не более 15 градусов мороза). Еще один плюс: конструкция выдерживает перегрузки на 200% до 120 секунд.

Релейный

Принцип работы релейного стабилизатора напряжения схож с работой других автотрансформаторных преобразователей с регулировкой по ступеням за счет включения/выключения отдельных обмоток силового автоматического трансформатора с помощью электромеханических реле. Поэтому повышение и понижение выходящего напряжения – это параллельный процесс повышения и понижения на вводе поддерживающего устройства.

Особенность релейного преобразователя – выводимое значение всегда меняется в пределах ступени. Например, задан диапазон допустимых значений от 215 до 220 Вольт. Это значит, что напряжение будет постоянно меняться в этих рамках, в то время как на вводе этот диапазон может составлять 200-230 Вольт. Размах ступени зависит от количества обмоток: чем их больше, тем меньше диапазон, и тем более ровное будет напряжение на выводе.

Из этого можно сделать вывод, что качественный стабилизатор не может показывать на экране только 220 Вольт. Если же значение не меняется, можно сделать вывод, что светодиоды расположены именно в форме числа «220» и никакого другого числа они показать не могут. Так делают недобросовестные производители для уменьшения себестоимости преобразователей переменного тока.

Преимущества:

  • Высокая скорость стабилизации;
  • Небольшие размеры;
  • Большой диапазон напряжения на вводе (от 140 до 270 Вольт);
  • Низкая восприимчивость к изменениям входящего напряжения;
  • Допустимая перегрузка в 110% на 4 секунды;
  • Бесшумная работа;
  • Возможность работы от -20 до +40 градусов Цельсия.

Недостатки:

  • Ступенчатая (а не плавная) стабилизация (свет моргает при большом диапазоне ступени);
  • Скорость стабилизации зависит от точности выходящего напряжения: чем точнее вольтаж, тем меньше скорость.

Электронный

Если вам нужно преобразовывать ток с неустойчивыми параметрами, то обратите внимание на электронный стабилизатор. Электронное устройство стабилизатора напряжения 220 вольт – это аналог релейного преобразователя. Разница между ними заключается только в способе смены включенной в нагруженную цепь трансформаторных обмоток.

В данной конструкции переключение происходит не благодаря наличию реле, а за счет симисторов или тиристоров. Так как механические детали отсутствуют, срок службы устройства резко возрастает. В сочетании с приемлемой стоимостью этот вариант для бытовой техники является оптимальным. В остальном преимущества и недостатки совпадают с теми, что указаны для релейного преобразователя.

Гибридный

В 2012 году в продаже появился новый вид стабилизатора – гибридный. Он представляет собой электромеханическое устройство, в конструкцию которого дополнительно входят два релейных преобразователя.

Основной элемент — электромеханический. Релейные элементы включаются в работу только тогда, когда последний уже не может выдать на выводе 220 Вольт. Это бывает, если входящее напряжение либо слишком низкое, либо слишком высокое. Так, электромеханический преобразователь работает при 144-256В. А релейный включается, когда значение опускается ниже 144В или поднимается выше 256В. Максимальный диапазон составляет 105-280 Вольт.

Гибридные преобразователи подходят для бесперебойного энергоснабжения потребителей электроэнергии в частном доме, квартире, офисе или даже магазине.

Качество и срок службы электроприборов зависит от параметров подаваемой энергии. При резких скачках, обрывах или провалах вольтажа техника выходит из строя. Противостоять этому может только бесперебойное энергоснабжение с напряжением условленного значения. Именно его позволяют получить стабилизаторы напряжения, без которых невозможна современная жизнь.

Стабилизаторы напряжения могут использоваться для дома (обычно это недорогие модели), а также в учреждениях и на предприятиях. Существует несколько разновидностей, основными из них являются:
  • релейные. Отличаются высокой скоростью регулирования, но характеризуются искажением синусоиды, ограниченной выходной мощностью и низкой точностью стабилизации;
  • симисторные. Такие стабилизаторы напряжения хорошо подходят для дома, поскольку обладают минимальной шумностью, плавной регулировкой, высокой коммутационной скоростью. Основной недочет – сравнительно небольшая точность;
  • сервоприводные (электромеханические). Важные преимущества – отсутствие искажений синусоиды и плавная регулировка. Также данные стабилизаторы напряжения отличаются точностью регулирования. Недостатками являются сравнительно низкая скорость реакции и использование механически движущихся деталей, что отрицательно сказывается на надежности;
  • феррорезонансные. Отличаются надежностью и точностью стабилизации. Основные недостатки – искажения синусоидальности, небольшой диапазон регулирования, невозможность работы в холостом режиме и при перегрузках.

Ключевые преимущества использования стабилизаторов напряжения дома

Реализуемые оптом и в розницу стабилизаторы напряжения обеспечивают защиту:
  • от перегрузок и коротких замыканий, которые могут возникнуть на выходе цепи нагрузки;
  • превышения выходного напряжения;
  • перегрева трансформатора, а также симисторных ключей.
Устройство также обеспечивает стабилизацию напряжения 220 В в нагрузке на всем диапазоне входных значений. Работа стабилизаторов напряжения основана на коммутации обмоток высокомощного автотрансформатора, которая управляется с помощью микропроцессора в режиме реального времени. Стабилизаторы напряжения для дома функционируют по следующей схеме:
  • контроллер определяет входное напряжение в сети;
  • происходит переключение силовых ключей;
  • осуществляется поддержка стабильного напряжения на выходе автотрансформатора с заданным уровнем точности.
Обратите внимание: при резком повышении входных параметров в сети контроллер автоматически запирает силовые ключи, благодаря чему происходит отключение нагрузки.

Недорогие стабилизаторы напряжения оптом

Многие задаются вопросом о том, где можно в Москве купить надежные стабилизаторы напряжения для промышленных объектов или частного дома. Наша компания предлагает выгодные условия сотрудничества для клиентов из РФ:
  • большой выбор устройств с оптимальным соотношением цены и качества. Вы можете подобрать недорогой одно- или трехфазный стабилизатор напряжения для дома, параметры которого соответствуют вашим требованиям;
  • возможность приобрести оборудование оптом и воспользоваться услугой сервисного обслуживания. На все реализуемые устройства предусмотрена продолжительная гарантия.
Узнать актуальные цены или купить интересующий стабилизатор напряжения для дома или промышленного использования можно, позвонив нашим менеджерам по телефонам: +7 (495) 150-25-57, +7-928-758-83-68, +7-985-511-22-00.

Важнейшими параметрами стабилизатора являются коэффициент стабилизации K ст, выходное сопротивление R вых и коэффициент полезного действия η.

Коэффициент стабилизации определяют из выражения K ст = [ ∆u вх / u вх ] / [ ∆u вых / u вых ]

где u вх, u вых - постоянные соответственно на входе и выходе стабилизатора; ∆u вх - изменение u вх ; ∆u вых - изменение u вых , соответствующее изменению ∆u вх.

Таким образом, коэффициент стабилизации - это отношение относительного изменения на входе к соответствующему относительному изменению на выходе стабилизатора.

Чем больше коэффициент стабилизации, тем меньше изменяется выходное при изменении входного. У простейших стабилизаторов величина K ст составляет единицы, а у более сложных - сотни и тысячи.

Выходное сопротивление стабилизатора определяется выражением R вых = | ∆u вых / ∆i вых |

где ∆u вых - изменение постоянного на выходе стабилизатора; ∆i вых - изменение постоянного выходного тока стабилизатора, которое вызвало изменение выходного напряжения.

Выходное сопротивление стабилизатора является величиной, аналогичной выходному сопротивлению выпрямителя с фильтром. Чем меньше выходное сопротивление, тем меньше изменяется выходное при изменении тока нагрузки. У простейших стабилизаторов величина R вых составляет единицы Ом, а у более совершенных - сотые и тысячные доли Ома. Необходимо отметить, что стабилизатор обычно резко уменьшает пульсации напряжения.

Коэффициент полезного действия стабилизатора η ст - это отношение мощности, отдаваемой в нагрузку Р н, к мощности, потребляемой от входного источника Р вх: η ст = Р н / Р вх

Традиционно стабилизаторы разделяют на параметрические и компенсационные.

Интересное видео о стабилизаторах напряжения:

Параметрические стабилизаторы

Являются простейшими устройствами, в которых малые изменения выходного достигаются за счет применения электронных приборов с двумя выводами, характеризующихся ярко выраженной нелинейностью вольт-амперной характеристики. Рассмотрим схему параметрического стабилизатора на основе стабилитрона (рис. 2.82).

Проанализируем данную схему (рис. 2.82, а), для чего вначале ее преобразуем, используя теорему об эквивалентном генераторе (рис. 2.82, б). Проанализируем графически работу схемы, построив на вольт-амперной характеристике стабилитрона линии нагрузки для различных значений эквивалентного напряжения, соответствующих различным значениям входного (рис. 2.82, в).
Из графических построений очевидно, что при значительном изменении эквивалентного u э (на ∆u э), а значит, и входного u вх, выходное изменяется на незначительную величину ∆u вых.

Причем, чем меньше дифференциальное сопротивление стабилитрона (т. е. чем более горизонтально идет характеристика стабилитрона), тем меньше ∆u вых.

Определим основные параметры такого стабилизатора, для чего в исходной схеме стабилитрон заменим его эквивалентной схемой и введем во входную цепь (рис. 2.82, г) источник напряжения, соответствующий изменению входного ∆u вх (на схеме пунктир): R вых = r д || R 0 ≈ r д, т.к. R 0 >> r д η ст = (u вых · I н) / (u вх · I вх) = (u вых · I н) / [ u вх (I н + I вх) ].

K ст = (∆u вх / u вх) : (∆u вых / u вых) Так как обычно R н >> r д Следовательно, K ст ≈ u вых / u вх · [ (r д + R 0) / r д ]

Обычно параметрические стабилизаторы используют для нагрузок от нескольких единиц до десятков миллиампер. Наиболее часто они используются как источники опорного в компенсационных стабилизаторах напряжения.

Компенсационные стабилизаторы

Представляют собой замкнутые системы автоматического регулирования. Характерными элементами компенсационного стабилизатора являются источник опорного (эталонного) (ИОН), сравнивающий и усиливающий элемент (СУЭ) и регулирующий элемент (РЭ).

Полезно отметить, что ООС охватывает два каскада - на операционном усилителе и на транзисторе. Рассматриваемая схема является убедительным примером, демонстрирующим преимущество общей отрицательной обратной связи по сравнению с местной.

Основным недостатком стабилизаторов с непрерывным регулированием является невысокий КПД, поскольку значительный расход мощности имеет место в регулирующем элементе, так как через него проходит весь нагрузки, а падение на нем равно разности между входным и выходным напряжениями стабилизатора.

В конце 60-х годов стали выпускать интегральные микросхемы компенсационных стабилизаторов с непрерывным регулированием (серия К142ЕН). В эту серию входят стабилизаторы с фиксированным выходным напряжением, с регулируемым выходным напряжением и двухполярным и входным и выходным напряжениями. В тех случаях, когда через нагрузку необходимо пропускать ток, превышающий предельно допустимые значения интегральных стабилизаторов, микросхему дополняют внешними регулирующими транзисторами.

Некоторые параметры интегральных стабилизаторов приведены в табл. 2.1, а вариант подключения к стабилизатору К142ЕН1 внешних элементов - на рис. 2.85.


Резистор R предназначен для срабатывания защиты по току, а R 1 - для регулирования выходного напряжения. Микросхемы К142УН5, ЕН6, ЕН8 являются функционально законченными стабилизаторами с фиксированным выходным напряжением, но не требуют подключения внешних элементов.

Импульсные стабилизаторы в настоящее время получили распространение не меньшее, чем непрерывные стабилизаторы.

Благодаря применению ключевого режима работы силовых элементов таких стабилизаторов, даже при значительной разнице в уровнях входных и выходных напряжений можно получить КПД, равный 70 − 80 % , в то время как у непрерывных стабилизаторов он составляет 30 − 50%.

В силовом элементе, работающем в ключевом режиме, средняя за период коммутации мощность, рассеиваемая в нем, значительно меньше, чем в непрерывном стабилизаторе, так как хотя в замкнутом состоянии ток, протекающий через силовой элемент, максимален, однако падение на нем близко к нулю, а в разомкнутом состоянии ток, протекающий через него, равен нулю, хотя максимально. Таким образом, в обоих случаях рассеиваемая мощность незначительна и близка к нулю.

Малые потери в силовых элементах приводят к уменьшению или даже исключению охлаждающих радиаторов, что значительно уменьшает массогабаритные показатели. Кроме того, использование импульсного стабилизатора позволяет в ряде случаев исключить из схемы силовой трансформатор, работающий на частоте 50 Гц, что также улучшает показатели стабилизаторов.

К недостаткам импульсных источников питания относят наличие пульсаций выходного напряжения .

Рассмотрим импульсный последовательный стабилизатор

Ключ S периодически включается и выключается схемой управления (СУ) в зависимости от значения на нагрузке. на выходе регулируют, изменяя отношение t вкл / t выкл, где t вкл, t выкл - длительности отрезков времени, на которых ключ находится соответственно во включенном и выключенном состояниях. Чем больше это отношение, тем больше на выходе.

В качестве ключа S часто используют биполярный или полевой транзистор.

Диод обеспечивает протекание тока катушки индуктивности тогда, когда ключ выключен и, следовательно, исключает появление опасных выбросов на ключе в момент коммутации. LC-фильтр снижает пульсации на выходе.

Ещё одно интересное видео о стабилизаторах: