Главная · Dns · Информативность модели как свойство означает. Модель: виды моделей, понятие и описание. Моделирование как процесс

Информативность модели как свойство означает. Модель: виды моделей, понятие и описание. Моделирование как процесс

    Конечность : модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;

    Упрощенность : модель отображает только существенные стороны объекта;

    Приблизительность : действительность отображается моделью грубо или приблизительно;

    Адекватность : насколько успешно модель описывает моделируемую систему;

    Информативность : модель должна содержать достаточную информацию о системе - в рамках гипотез, принятых при построении модел;

    Потенциальность : предсказуемость модели и её свойств;

    Сложность : удобство её использования;

    Полнота : учтены все необходимые свойства;

    Адаптивность .

Одни и те же устройства, процессы, явления и т. д. (далее - «системы») могут иметь много разных видов моделей. Как следствие, существует много названий моделей, большинство из которых отражает решение некоторой конкретной задачи.

Требования к моделям. Моделирование всегда предполагает принятие допущений той или иной степени важности. При этом должны удовлетворяться следующие требования к моделям:

    адекватность , то есть соответствие модели исходной реальной системе и учет, прежде всего, наиболее важных качеств, связей и характеристик. Оценить адекватность выбранной модели, особенно, например, на начальной стадиипроектирования, когда вид создаваемой системы ещё неизвестен, очень сложно. В такой ситуации часто полагаются на опыт предшествующих разработок или применяют определенные методы, например,метод последовательных приближений;

    точность , то есть степень совпадения полученных в процессе моделирования результатов с заранее установленными, желаемыми. Здесь важной задачей является оценка потребной точности результатов и имеющейся точности исходных данных, согласование их как между собой, так и с точностью используемой модели;

    универсальность , то есть применимость модели к анализу ряда однотипных систем в одном или нескольких режимах функционирования. Это позволяет расширить область применимости модели для решения бо́льшего круга задач;

    целесообразная экономичность , то есть точность получаемых результатов и общность решения задачи должны увязываться с затратами на моделирование. И удачный выбор модели, как показывает практика, - результат компромисса между отпущенными ресурсами и особенностями используемой модели;

Выбормодели и обеспечение точности моделирования считается одной из самых важных задач моделирования.

Основные этапы моделирования. Моделирование – процесс создания и использования модели. Моделирование является обязательной частью исследований и разработок, неотъемлемой частью нашей жизни, поскольку сложность любого материального объекта и окружающего его мира бесконечна вследствие неисчерпаемости материи и форм её взаимодействия внутри себя и с внешней средой.

Цели моделирования

    Познание действительности

    Проведение экспериментов

    Проектирование и управление

    Прогнозирование поведения объектов

    Тренировка и обучения специалистов

    Обработка информации

Все этапы моделирования определяются поставленной задачей и целями моделирования. В общем случае процесс построения и исследования модели можно представить следующей схемой:

Первый этап - постановка задачи включает в себя стадии:описание задачи, определение цели моделирования, анализ объекта.

    Описание задачи. Задача формулируется на обычном языке. По характеру постановки все задачи можно разделить на две основные группы. К первой группе можно отнести задачи, в которых требуется исследовать, как изменятся характеристики объекта при некотором воздействии на него, «что будет, если? ...». В задачах, относящихся ко второй группе, требуется определить, какое надо произвести воздействие на объект, чтобы его параметры удовлетворяли некоторому заданному условию, «как сделать, чтобы? ..».

    Определение цели моделирования. На этой стадии необходимо среди многих характеристик (параметров) объекта выделить существенные . Для одного и того же объекта при разных целях моделирования существенными будут считаться разные свойства. Определение цели моделирования позволяет четко установить, какие данные являются исходными, что требуется получить на выходе и какими свойствами объекта можно пренебречь. Строитсясловесная модель задачи.

    Анализ объекта подразумевает четкое выделение моделируемого объекта и его основных свойств.

Второй этап - формализация задачи связан с созданиемформализованной модели , то есть модели, записанной на каком-либо формальном языке. Например, данные переписи населения, представленные в виде таблицы или диаграммы - это формализованная модель.

В общем смысле формализация - это приведение существенных свойств и признаков объекта моделирования к выбранной форме. Формальная модель - это модель, полученная в результате формализации.

Третий этап - разработка модели начинается с выбора инструмента моделирования, другими словами, программной среды, в которой будет создаваться и исследоваться модель. От этого выбора зависиталгоритм построения модели, а также форма его представления. В среде программирования этопрограмма , написанная на соответствующем языке. В прикладных средах (электронные таблицы, СУБД, графических редакторах и т. д.) этопоследовательность технологических приемов , приводящих к решению задачи. Одну и ту же задачу можно решить, используя различные среды. Выбор инструмента моделирования зависит, в первую очередь, от реальных возможностей, как технических, так и материальных.

Четвертый этап - эксперимент включает две стадии: тестирование модели и проведение исследования.

    Тестирование модели - процесс проверки правильности построения модели. На этой стадии проверяется разработанный алгоритм построения модели иадекватностьполученной модели объекту и цели моделирования. Для проверки правильности алгоритма построения модели используется тестовые данные, для которых конечный результат заранее известен (обычно его определяют ручным способом). Если результаты совпадают, то алгоритм разработан верно, если нет - надо искать и устранять причину несоответствия. Тестирование должно быть целенаправленным и систематизированным, а усложнение тестовых данных должно происходить постепенно. Чтобы убедиться, что построенная модель правильно отражает существенные для цели моделирования свойства оригинала, то есть является адекватной, необходимо подбирать тестовые данные, которые отражают реальную ситуацию.

    Исследование модели. К этой стадии можно переходить только после того, как тестирование модели прошло успешно, и вы уверены, что создана именно та модель, которую необходимо исследовать.

Пятый этап - анализ результатов является ключевым для процесса моделирования. Именно по итогам этого этапа принимается решение: продолжать исследование или закончить. Если результаты не соответствуют целям поставленной задачи, значит, на предыдущих этапах были допущены ошибки. В этом случае необходимокорректировать модель , то есть возвращаться к одному из предыдущих этапов. Процесс повторяется до тех пор, пока результаты эксперимента не будут отвечать целям моделирования.

Информационная модель объекта -модельобъекта, представленная в видеинформации, описывающей существенные для данного рассмотренияпараметрыипеременные величиныобъекта, связи между ними, входы и выходы объекта и позволяющая путём подачи на модель информации об изменениях входных величин моделировать возможные состояния объекта.Информационные модели нельзя потрогать или увидеть, они не имеют материального воплощения, потому что строятся только на информации. Информационная модель - совокупность информации, характеризующая существенные свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешниммиром.

Виды информационных моделей:

1. Описательные информационные модели - это модели, созданные на естественном языке (т.е. на любом языке общения между людьми: английском, русском, китайском, мальтийском и т.п.) в устной или письменной форме.

2. Формальные информационные модели - это модели, созданные на формальном языке (т.е. научном, профессиональном или специализированном). Примеры формальных моделей: все виды формул, таблицы, графы, карты, схемы и т.д.

3. Хроматические (информационные) модели - это модели, созданные на естественном языке семантики цветовых концептов и их онтологических предикатов (т.е. на языке смыслов и значений цветовых канонов, репрезентативно воспроизводившихся в мировой культуре). Примеры хроматических моделей: "атомарная" модель интеллекта (АМИ), межконфессиональная имманентность религий (МИР), модель аксиолого-социальной семантики (МАСС) и др., созданные не базе теории и методологии хроматизма.

Рассмотрим подробнее класс информационных моделей с позиции способов представления информации . Форма представления информационной модели зависит от способа кодирования (алфавита) и материального носителя.

Воображаемое (мысленное или интуитивное) моделирование - это мысленное представление об объекте. Такие модели формируются в воображении человека и сопутствуют его сознательной деятельности. Они всегда предшествуют созданию материального объекта, материальной и информационной модели, являясь одним из этапов творческого процесса. Например, музыкальная тема в мозгу композитора - интуитивная модель музыкального произведения.

Вербальное моделирование (относится к знаковым) - это представление информационной модели средствами естественного разговорного языка (фонемами). Мысленная модель, выраженная в разговорной форме, называется вербальной (от латинского слова verbalize - устный). Форма представления такой модели - устное или письменное сообщение. Примерами являются литературные произведения, информация в учебных пособиях и словарях, инструкции пользования устройством, правила дорожного движения.Наглядное (выражено на языке представления) моделирование - это выражение свойств оригинала с помощью образов. Например, рисунки, художественные полотна, фотографии, кинофильмы. При научном моделировании понятия часто кодируются рисунками -иконическое моделирование. Сюда же относятсягеометрические модели - информационные модели, представленные средствами графики.

Образно-знаковое моделирование использует знаковые образы какого-либо вида: схемы, графы, чертежи, графики, планы, карты. К этой группе относятся структурные информационные модели, создаваемые для наглядного изображения составных частей и связей объектов. Наиболее простые и распространенные информационные структуры - это таблицы, схемы, графы, блок-схемы, деревья.

Знаковое (символическое выражено на языке описания) моделирование использует алфавиты формальных языков: условные знаки, специальные символы, буквы, цифры и предусматривает совокупность правил оперирования с этими знаками. Примеры: специальные языковые системы, физические или химические формулы, математические выражения и формулы, нотная запись и т. д. Программа, записанная по правилам языка программирования, является знаковой моделью.

Одним из наиболее распространенных формальных языков является алгебраический язык формул в математике , который позволяет описывать функциональные зависимости между величинами. Составление математической модели во многих задачах моделирования хоть и промежуточная, но очень существенная стадия. В тех случаях, когда моделирование ориентировано на исследование моделей с помощью компьютера, одним из его этапов является разработкакомпьютерной модели .Компьютерная модель - это созданный за счет ресурсов компьютера виртуальный образ, качественно и количественно отражающий внутренние свойства и связи моделируемого объекта, иногда передающий и его внешние характеристики. Компьютерная модель представляет собой материальную модель, воспроизводящую внешний вид, строение или действие моделируемого объекта посредством электромагнитных сигналов. Разработке компьютерной модели предшествуют мысленные, вербальные, структурные, математические и алгоритмические модели.

2. Общие признаки и свойства моделей.

Общие признаки моделей

1. Модель представляет собой «четырехместную конструкцию», компонентами которой являются субъект; задача, решаемая субъектом; объект-оригинал и язык описания или способ воспроизведения модели. Особую роль в структуре обобщенной модели играет решаемая субъектом задача. Вне контекста задачи или класса задач понятие модели не имеет смысла.

2. Каждому материальному объекту соответствует бесчисленное множество в равной мере адекватных, но различных по существу моделей, связанных с разными задачами.

3. Паре задача-объект соответствует множество моделей, содержащих в принципе одну и ту же информацию, но различающихся формами ее представления или воспроизведения.

4. Модель всегда является лишь относительным, приближенным подобием объекта-оригинала и в информационном отношении принципиально беднее последнего.

5. Произвольная природа объекта-оригинала, фигурирующая в принятом определении, означает, что этот объект может быть материально-вещественным, может носить чисто информационный характер и, наконец, может представлять собой комплекс разнородных материальных и информационных компонентов. Однако независимо от природы объекта, характера решаемой задачи и способа реализации модель представляет собой информационное образование.

6. В частном случае роль объекта моделирования в исследовательской или прикладной задаче играет не фрагмент реального мира, рассматриваемый непосредственно, а некая идеальная конструкция, т.е. по сути дела другая модель, созданная ранее и практически достоверная.

СВОЙСТВА МОДЕЛЕЙ

1) конечность: модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;

2) упрощенность: модель отображает только существенные стороны объекта;

3) приблизительность: действительность отображается моделью приблизительно;

4)·адекватность: степень успешности описания моделью объекта моделирования;

5) информативность: модель должна содержать достаточную информацию о системе – в рамках гипотез, принятых при построении модели.

Границы между моделями различного вида весьма условны. Можно говорить о различных режимах использования моделей - имитационном, стохастическом, динамическом, детерминированном и др.

Как правило, модель включает в себя: объект О , субъект А (не обязательно) , задачу Z , ресурсы B , среду моделирования С .

Модель можно представить формально в виде: М = < O, А, Z, B, C >.

Основные свойства любой модели :

  • целенаправленность - модель всегда отображает некоторую систему, т.е. имеет цель такого отображения;
  • конечность - модель отображает оригинал лишь в конечном числе его отношений и ресурсы моделирования конечны;
  • упрощенность - модель отображает только существенные стороны объекта и она должна быть проста для исследования или воспроизведения;
  • наглядность, обозримость основных ее свойств и отношений;
  • доступность и технологичность для исследования или воспроизведения;
  • информативность - модель должна содержать достаточную информацию о системе (в рамках гипотез, принятых при построении модели) и должна давать возможность получать новую информацию;
  • полнота - в модели должны быть учтены все основные связи и отношения, необходимые для обеспечения цели моделирования;
  • управляемость - модель должна иметь хотя бы один параметр, изменениями которого можно имитировать поведение моделируемой системы в различных условиях.

Жизненный цикл моделируемой системы:

  • сбор информации об объекте, выдвижение гипотез, предварительный модельный анализ;
  • проектирование структуры и состава моделей (подмоделей);
  • построение спецификаций модели, разработка и отладка отдельных подмоделей, сборка модели в целом, идентификация (если это нужно) параметров моделей;
  • исследование модели - выбор метода исследования и разработка алгоритма (программы) моделирования;
  • исследование адекватности, устойчивости, чувствительности модели;
  • оценка средств моделирования (затраченных ресурсов);
  • интерпретация, анализ результатов моделирования и установление некоторых причинно-следственных связей в исследуемой системе;
  • генерация отчетов и проектных (народно-хозяйственных) решений;
  • уточнение, модификация модели, если это необходимо, и возврат к исследуемой системе с новыми знаниями, полученными с помощью модели и моделирования.

Моделирование – есть метод системного анализа.

Часто в системном анализе при модельном подходе исследования может совершаться одна методическая ошибка, а именно, - построение корректных и адекватных моделей (подмоделей) подсистем системы и их логически корректная увязка не дает гарантий корректности построенной таким способом модели всей системы.

Модель, построенная без учета связей системы со средой, может служить подтверждением теоремы Геделя, а точнее, ее следствия, утверждающего, что в сложной изолированной системе могут существовать истины и выводы, корректные в этой системе и некорректные вне ее.

Наука моделирования состоит в разделении процесса моделирования (системы, модели) на этапы (подсистемы, подмодели), детальном изучении каждого этапа, взаимоотношений, связей, отношений между ними и затем эффективного описания их с максимально возможной степенью формализации и адекватности.

В случае нарушения этих правил получаем не модель системы, а модель "собственных и неполных знаний".

Моделирование рассматривается, как особая форма эксперимента, эксперимента не над самим оригиналом, т.е. простым или обычным экспериментом, а над копией оригинала. Здесь важен изоморфизм систем оригинальной и модельной.

Изоморфизм - равенство, одинаковость, подобие.

Конец работы -

Эта тема принадлежит разделу:

Общая характеристика процессов сбора, передачи и обработки информации

На сайте сайт читайте: общая характеристика процессов сбора, передачи и обработки информации.. 15. о в прохорова..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Информация, ее представление и измерение
Информатика – это наука об информационных процессах, о моделях, об алгоритмах и алгоритмизации, о программах и программировании, об исполнителях алгоритмов и различных исполняющих с

Системы счисления и действия в них
Общая характеристика процессов сбора, передачи, обработки и накопления информации базируется на использовании кодирования информации средствами ее представления в виде чисел определенных систем счи

Общая характеристика процессов передачи информации
Пространство сообщений. Коды обнаружения и исправления ошибок Введем пространство сообщений в виде E(n, Um), где Um - алфавит, m - ра

Кодирование и шифрование информации
Возникновение индустрии обработки информации привело к возникновению индустрии средств ее защиты и к актуализации самой проблемы защиты информации, проблемы информационной безопасности. Од

При кодировании нет такого секретного ключа, так как кодирование ставит целью лишь более сжатое, компактное представление сообщения
Если k – ключ, то можно записать f(k(A)) = B. Для каждого ключа k, преобразование f(k) должно быть обратимым, то есть f(k(B)) = A. Совокупность преобразования f(k) и соответствия множества k называ

Компьютерные вирусы
Компьютерный вирус – специальная программа, которая составлена кем-то со злым умыслом или для демонстрации честолюбивых, в плохом смысле, интересов, способная к воспроизводству

Модели и моделирование
Модель - это объект или описание объекта, системы для замещения одной системы (оригинала) другой системой для лучшего изучения оригинала или воспроизведения каких-либо его свойств.

Компьютерное моделирование
Компьютерное моделирование от постановки задачи до получения результатов проходит следующие этапы: 1. Постановка задачи: · формулировка задачи; · о

Функции алгебры логики
Рассмотриммножество векторов X = {}. Будем предполагать, что координаты этих векторов могут принимать значения 0 или 1. Таким образом множество X состоит из 2

Дистрибутивность
x1 & (x2 v x3) = (x1 & x2) v (x1 & x3). x1 v (x2 & x

Идемпотентность
A v A = A & A = A. 6.Булева алгебра содержит элементы 0,1 , такие что для всякого элемента A Î SB справедливо

Минимизация функций алгебры логики
Введем понятие конечного автомата, как некоторой абстрактной системы, характеризующейся конечным числом состояний. Работа такого автомата напрямую связана с реализацией соответствующей ему логическ

Программные средства реализации информационных процессов
Представление вычислительного устройства схемой, состоящей из логических элементов наиболее исследованный вид структурной реализации вычислительных и информационных процессов. Другой вид - реализац

Технические средства реализации информационных процессов
Компьютер есть сложное техническое устройство, состоящее из простых элементов. Любой электронный логический блок компьютера состоит из вентилей (логических устройств, базовых логических с

Алгоритмизация и программирование
"Алгоритм" является базовым основополагающим понятием информатики, а алгоритмизация (программирование) – основным разделом курса информатики. Соврем

Каждый современный человек ежедневно сталкивается с понятиями «объект» и «модель». Примерами объектов являются как предметы, доступные для осязания (книга, земля, стол, ручка, карандаш), так и недоступные (звезды, небо, метеориты), предметы художественного творчества и умственной деятельности (сочинение, стихотворение, решение задачи, картина, музыка и другие). Причем каждый объект человеком воспринимается только как единое целое.

Объект. Виды. Характеристики

Исходя из вышесказанного, можно сделать вывод, что объект является частью внешнего мира, которая может быть воспринята в качестве единого целого. Каждый предмет восприятия имеет свои индивидуальные характеристики, отличающие его от других (форма, сфера использования, цвет, запах, размер и так далее). Важнейшей характеристикой объекта является название, но для полного качественного его описания одного названия недостаточно. Чем более полно и подробно описан объект, тем легче процесс его распознавания.

Модели. Определение. Классификация

В своей деятельности (образовательной, научной, художественной, технологической) человек ежедневно использует уже существующие и создает новые модели внешнего мира. Они позволяют сформировать впечатление о процессах и объектах, недоступных для непосредственного восприятия (очень маленькие или, наоборот, очень большие, очень медленные или очень быстрые, очень далекие и так далее).

Итак, модель - это некоторый объект, отражающий важнейшие особенности изучаемого явления, объекта либо процесса. Может существовать несколько вариаций моделей одного и того же объекта, также как несколько объектов могут быть описаны одной единственной моделью. Например, подобная ситуация возникает в механике, когда различные тела с материальной оболочкой могут быть выражены то есть одинаковой моделью (человек, автомобиль, поезд, самолет).

Важно помнить, что ни одна модель не способна полноценно заменить изображаемый объект, так как она отображает только некоторые из его свойств. Но порой при решении определенных задач различных научных и промышленных течений описание внешнего вида модели может быть не просто полезным, но единственной возможностью представить и изучить особенности характеристик объекта.

Сфера применения предметов моделирования

Модели играют важную роль в различных сферах жизни человека: в науке, образовании, торговле, проектировании и других. Например, без их применения невозможны проектирование и сборка технических устройств, механизмов, электрических цепей, машин, зданий и так далее, так как без предварительных расчетов и создания чертежа выпуск даже простейшей детали невозможен.

Часто используются модели в образовательных целях. Они носят названия наглядных. Например, из географии представление о Земле как о планете человек получает, изучая глобус. Также актуальными наглядные модели являются и в других науках (химии, физике, математике, биологии и других).

В свою очередь, теоретические модели востребованы при изучении естественных и (биологии, химии, физики, геометрии). Они отражают свойства, поведение и строение объектов, подвергающихся изучению.

Моделирование как процесс

Моделирование - метод познавания, включающий в себя исследование существующих и создание новых моделей. Предметом познания данной науки является модель. ранжируются в зависимости от различных свойств. Как известно, любой объект имеет множество характеристик. При создании определенной модели выделяются лишь наиболее важные для решения поставленной задачи.

Процессом создания моделей является художественное творчество во всем своем разнообразии. В связи с этим фактически каждое художественное или литературное произведение можно рассматривать в качестве модели реального объекта. Например, картины являются моделями реальных пейзажей, натюрмортов, людей, литературные произведения - моделями человеческих жизней и так далее. Например, при создании модели самолета с целью изучения его важно отразить в ней геометрические свойства оригинала, но абсолютно неважен его цвет.

Одни и те же объекты различными науками изучаются с разных точек зрения, а соответственно, их виды моделей для изучения будут также отличаться. Например, физика изучает процессы и результаты взаимодействия объектов, химия - химический состав, биология - поведение и строение организмов.

Модель относительно временного фактора

Относительно времени модели делятся на два вида: статические и динамические. Примером первого вида является единоразовое обследование человека в клинике. Оно отображает картину его состояния здоровья на данный момент, в то время как его медицинская карта будет моделью динамической, отражающей изменения, происходящие в организме на протяжении определенного периода времени.

Модель. Виды моделей относительно формы

Как уже понятно, модели могут различаться по разным характеристикам. Так, все ныне известные виды моделей данных можно условно разделить на два основных класса: материальные (предметные) и информационные.

Первый вид передает физические, геометрические и иные свойства объектов в материальной форме (анатомический муляж, глобус, макет здания и так далее).

Виды разнятся по форме реализации: знаковая и образная. Образные модели (фотографии, рисунки и другое) являются зрительными реализациями объектов, зафиксированными на определенном носителе (фото-, кинопленке, бумажном или цифровом).

Они широко применяются в образовательном процессе (плакаты), при изучении различных наук (ботаника, биология, палеонтология и других). Знаковые модели - это реализации объектов в виде символов одной из известных языковых систем. Они могут быть представлены в виде формул, текста, таблиц, схем и так далее. Существуют случаи, когда, создавая знаковую модель (виды моделей передают конкретно то содержание, которое требуется для изучения определенных характеристик объекта), используют сразу несколько известных языков. Примером в данном случае выступают различные графики, диаграммы, карты и подобное, где используются как графические символы, так и символы одной из языковых систем.

С целью отражения сведений из различных сфер жизни применяются три основных вида информационных моделей: сетевые, иерархические и табличные. Из них наиболее популярным является последний, применяемый для фиксации различных состояний объектов и характерных для них данных.

Табличная реализация модели

Данный вид информационной модели, как уже было сказано выше, является наиболее известным. Выглядит он следующим образом: это обычная, состоящая из строк и столбцов таблица прямоугольной формы, графы которой заполнены символами одного из известных знаковых языков мира. Применяются табличные модели с целью характеристики объектов, обладающих одинаковыми свойствами.

С их помощью в различных научных сферах могут быть созданы как динамические, так и статические модели. Например, таблицы, содержащие математические функции, различные статистические данные, расписания поездов и так далее.

Математическая модель. Виды моделей

Отдельной разновидностью информационных моделей являются математические. Все виды обычно состоят из уравнений, написанных на языке алгебры. Решение данных задач, как правило, основывается на процессе поиска равнозначных преобразований, которые способствуют выражению переменной величины в виде формулы. Существуют также для некоторых уравнений и точные решения (квадратные, линейные, тригонометрические и так далее). Как следствие, для их решения приходится применять методы решения с приближенной заданной точностью, иначе говоря, такие виды математических данных, как числовой (метод половинного деления), графический (построение графиков) и другие. Метод половинного деления целесообразно использовать лишь при условии, что известен отрезок, где функция при определенных значениях принимает полярные значения.

А метод построения графика является унифицированным. Его можно использовать как в вышеописанном случае, так и в ситуации, когда решение может быть только приближенным, а не точным, в случае так называемого "грубого" решения уравнений.

Адекватность – степень соответствия модели исследуемому реальному объекту. Она никогда не может быть полной. На практике модель считают адекватной, если она с удовлетворительной точностью позволяет достичь целей исследования.

Сложность – количественная характеристика свойств объекта, описывающих модель. Чем она выше, тем сложнее модель. Однако на практике надо стремиться к наиболее простой модели, позволяющую достичь требуемые результаты изучения.

Потенциальность – способность модели дать новые знания об исследуемом объекте, спрогнозировать его поведений.

Математические модели.

Основные этапы построения математической модели:

1. составляется описание функционирования системы в целом;

2. составляется перечень подсистем и элементов с описанием их функционирования, характеристик и начальных условий, а также взаимодействия между собой;

3. определяется перечень воздействующих на систему внешних факторов и их характеристик;

4. выбираются показатели эффективности системы, т.е. такие числовые характеристики системы, которые определяют степень соответствия системы ее назначению;

5. составляется формальная математическая модель системы;

6. составляется машинная математическая модель, пригодная для исследования системы на ЭВМ.

Требования к математической модели:

Требования определяются прежде всего ее назначением, т.е. характером поставленной задачи:

"Хорошая" модель должна быть:

1. целенаправленной;

2. простой и понятной пользователю;

3. достаточной с точки зрения возможностей решения поставленной задачи;

4. удобной в обращении и управлении;

5. надежной в смысле защиты от абсурдных ответов;

6. допускающей постепенные изменения в том смысле, что, будучи вначале простой, она при взаимодействии с пользователями может становиться более сложной.

Математические модели. Математические модели представляют собой формализованное представление системы с помощью абстрактного языка, с помощью математических соотношений, отражающих процесс функционирования системы. Для составления математических моделей можно использовать любые математические средства - алгебраическое, дифференциальное, интегральное исчисления, теорию множеств, теорию алгоритмов и т.д. По существу вся математика создана для составления и исследования моделей объектов и процессов.

К средствам абстрактного описания систем относятся также языки химических формул, схем, чертежей, карт, диаграмм и т.п. Выбор вида модели определяется особенностями изучаемой системы и целями моделирования, т.к. исследование модели позволяет получить ответы на определённую группу вопросов. Для получения другой информации может потребоваться модель другого вида. Математические модели можно классифицировать как детерминированные и вероятностные, аналитические, численные и имитационные .

Детерминирован­ное моделирование отображает процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероят­ностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса и оцениваются средние характе­ристики, т. е. набор однородных реализаций.

Аналитической моделью называется такое формализованное описание системы, которое позволяет получить решение уравнения в явном виде, используя известный математический аппарат.

Численная модель характеризуется зависимостью такого вида, который допускает только частные решения для конкретных начальных условий и количественных параметров моделей.

Имитационная модель - это совокупность описания системы и внешних воздействий, алгоритмов функционирования системы или правил изменения состояния системы под влиянием внешних и внутренних возмущений. Эти алгоритмы и правила не дают возможности использования имеющихся математических методов аналитического и численного решения, но позволяют имитировать процесс функционирования системы и производить вычисления интересующих характеристик. Имитационные модели могут быть созданы для гораздо более широкого класса объектов и процессов, чем аналитические и численные. Поскольку для реализации имитационных моделей служат ВС, средствами формализованного описания ИМ служат универсальные и специальные алгоритмические языки. ИМ в наибольшей степени подходят для исследования ВС на системном уровне.

8. Структура модели. Моделирование - это воспроизведение хар-стик одного объекта на некот другом объекте, спец-но созданного для их изучения. Последний называется моделью.

Под структурой модели (и физической в том числе) понимают совок-ть эл-в, входящих в модель и связей между ними. При этом, модель (её элементы) может иметь ту же или иную физическую природу. Близость структур – одно из главных особенностей при моделировании. В каждом конкретном сл-е модель может выполнить свою роль тогда, когда степень ее соотв-я объекту опр-на достаточно строго. Упрощение структуры модели снижает точность.