Главная · Windows 10 · Определение предела функции многих переменных. Предел и непрерывность функции нескольких переменных. Частные приращения и частные производные

Определение предела функции многих переменных. Предел и непрерывность функции нескольких переменных. Частные приращения и частные производные

Определение функции нескольких переменных. Основные понятия.

Если каждой паре независимых друг от друга чисел (х,у) из некоторого множества по какому-либо правилу ставится в соответствие одно значение переменной z, то она называется функцией двух переменных . z=f(x,y,)

Область определения функции z - совокупность пар (х,у), при которых функция z существует.

Множество значений (область значений) функции – все значения, которые принимает функция в ее области определения.

График функции двух переменных - множество точек P, координаты которых удовлетворяют уравнению z=f(x,y)

Окрестность точки M0 (х0;y0) радиуса r – совокупность всех точек (x,y), которые удовлетворяют условию < r

Область определения и область значений функции нескольких переменных. График функции нескольких переменных.

Предел и непрерывность функции нескольких переменных.

Предел функции нескольких переменных

Для того чтобы дать понятие предела функции нескольких переменных, ограничимся случаем двух переменных х и у . По определению функция f (x, y) имеет предел в точке (х 0 , у 0), равный числу А , обозначаемый так:

(1)

(пишут еще f (x, y) А при (x, y) → (х 0 , у 0)), если она определена в некоторой окрестности точки (х 0 , у 0), за исключением, быть может, самой этой точки и если существует предел

(2)

какова бы ни была стремящаяся к (х 0 , у 0) последовательность точек (x k ,y k ).

Так же, как в случае функции одной переменной, можно ввести другое эквивалентное определение предела функции двух переменных: функция f имеет в точке (х 0 , у 0) предел, равный А , если она определена в некоторой окрестности точки (х 0 , у 0) за исключением, быть может, самой этой точки, и для любого ε > 0 найдется такое δ > 0, что

| f (x, y) A | < ε (3)

для всех (x, y) , удовлетворяющих неравенствам

0 < < δ. (4)

Это определение, в свою очередь, эквивалентно следующему: для любого ε > 0 найдется δ-окрестность точки (х 0 , у 0) такая, что для всех (x, y ) из этой окрестности, отличных от (х 0 , у 0), выполняется неравенство (3).

Так как координаты произвольной точки (x, y ) окрестности точки (х 0 , у 0) можно записать в виде х = х 0 + Δх , у = у 0 + Δу , то равенство (1) эквивалентно следующему равенству:

Рассмотрим некоторую функции, заданную в окрестности точки (х 0 , у 0), кроме, быть может, самой этой точки.

Пусть ω = (ω х , ω у ) – произвольный вектор длины единица (|ω| 2 = ω х 2 + ω у 2 = 1) и t > 0 – скаляр. Точки вида

(х 0 + t ω х , y 0 + t ω у ) (0 < t )

образуют луч, выходящий из (х 0 , у 0) в направлении вектора ω. Для каждого ω можно рассматривать функцию

f (х 0 + t ω х , y 0 + t ω у ) (0 < t < δ)

от скалярной переменной t , где δ – достаточно малое число.

Предел этой функции (одной переменной t )

f (х 0 + t ω х , y 0 + t ω у ),

если он существует, естественно называть пределом f в точке (х 0 , у 0) по направлению ω.

Пример 1. Функции

определены на плоскости (x, y ) за исключением точки х 0 = 0, у 0 = 0. Имеем (учесть, что и ):

(для ε > 0 полагаем δ = ε/2 и тогда | f (x, y) | < ε, если < δ).

из которого видно, что предел φ в точке (0, 0) по разным направлениям вообще различен (единичный вектор луча y = kx , х > 0, имеет вид

).

Число А называется пределом функции f(M) при М М 0 , если для любого числа ε > 0 всегда найдется такое число δ > 0, что для любых точек М , отличных от М 0 и удовлетворяющих условию | ММ 0 | < δ, будет иметь место неравенство | f(M) А | < ε.

Предел обозначают В случае функции двух переменных

Теоремы о пределах. Если функции f 1 (M) и f 2 (M) при М М 0 стремятся каждая к конечному пределу, то:

в)

Непрерывность функции нескольких переменных

По определению функция f (x, y) непрерывна в точке (х 0 , у 0), если она определена в некоторой ее окрестности, в том числе в самой точке (х 0 , у 0) и если предел f (x, y) в этой точке равен ее значению в ней:

(1)

Условие непрерывности f в точке (х 0 , у 0) можно записать в эквивалентной форме:

(1")

т.е. функция f непрерывна в точке (х 0 , у 0), если непрерывна функция f (х 0 + Δх , у 0 + Δу) от переменных Δх , Δу при Δх = Δу = 0.

Можно ввести приращение Δи функции и = f (x, y) в точке (x, y) , соответствующее приращениям Δх , Δу аргументов

Δи = f (х + Δх , у + Δу) f (x, y)

и на этом языке определить непрерывность f в (x, y) : функция f непрерывна в точке (x, y) , если

(1"")

Теорема. Сумма, разность, произведение и частное непрерывных в точке (х 0 ,у 0) функций f и φ есть непрерывная функция в этой точке, если, конечно, в случае частного φ (х 0 , у 0) ≠ 0.

Постоянную с можно рассматривать как функцию f (x, y) = с от переменных x,y . Она непрерывна по этим переменным, потому что

| f (x, y) f (х 0 , у 0) | = |с – с | = 0 0.

Следующими по сложности являются функции f (x, y) = х и f (x, y) = у . Их тоже можно рассматривать как функции от (x, y) , и при этом они непрерывны. Например, функция f (x, y) = х приводит в соответствие каждой точке (x, y) число, равное х . Непрерывность этой функции в произвольной точке (x, y) может быть доказана так:

| f (х + Δх , у + Δу) f (x, y) | = | f (х + Δх) – х | = | Δх | ≤ 0.

Если производить над функциями x, y и постоянными действия сложения, вычитания и умножения в конечном числе, то будем получать функции, называемые многочленами от x, y . На основании сформулированных выше свойств многочлены от переменных x, y – непрерывные функции от этих переменных для всех точек (x, y) R 2 .

Отношение P/Q двух многочленов от (x, y) есть рациональная функция от (x,y) , очевидно, непрерывная всюду на R 2 , за исключением точек (x, y) , где Q(x, y) = 0.

Р (x, y) = х 3 – у 2 + х 2 у – 4

может быть примером многочлена от (x, y) третьей степени, а функция

Р (x, y) = х 4 – 2х 2 у 2 + у 4

есть пример многочлена от (x, y) четвертой степени.

Приведем пример теоремы, утверждающей непрерывность функции от непрерывных функций.

Теорема. Пусть функция f (x, y, z) непрерывна в точке (x 0 , y 0 , z 0 ) пространства R 3 (точек (x, y, z) ), а функции

x = φ (u, v), y = ψ (u, v), z = χ (u, v)

непрерывны в точке (u 0 , v 0 ) пространства R 2 (точек (u, v) ). Пусть, кроме того,

x 0 = φ (u 0 , v 0 ), y 0 = ψ (u 0 , v 0 ), z 0 = χ (u 0 , v 0 ) .

Тогда функция F (u, v) = f [ φ (u, v), ψ (u, v), χ (u, v) ] непрерывна (по

(u, v) ) в точке (u 0 , v 0 ) .

Доказательство. Так как знак предела можно внести под знак характеристики непрерывной функции, то

Теорема. Функция f (x, y) , непрерывная в точке (х 0 , у 0) и не равная нулю в этой точке, сохраняет знак числа f (х 0 , у 0) в некоторой окрестности точки (х 0 , у 0).

По определению функция f (x) = f (x 1 , ..., х п) непрерывна в точке х 0 = 0 1 , ..., х 0 п) , если она определена в некоторой ее окрестности, в том числе и в самой точке х 0 , и если предел ее в точке х 0 равен ее значению в ней:

(2)

Условие непрерывности f в точке х 0 можно записать в эквивалентной форме:

(2")

т.е. функция f (x) непрерывна в точке х 0 , если непрерывна функция f (х 0 +h) от h в точке h = 0.

Можно ввести приращение f в точке х 0 , соответствующее приращению h = (h 1 , ..., h п) ,

Δ h f (х 0 ) = f (х 0 + h) f (х 0 )

и на его языке определить непрерывность f в х 0: функция f непрерывна в х 0 , если

Теорема. Сумма, разность, произведение и частное непрерывных в точке х 0 функций f (x) и φ (x) есть непрерывная функция в этой точке, если, конечно, в случае частного φ 0 ) ≠ 0.

Замечание. Приращение Δ h f (х 0 ) называют также полным приращением функцииf в точке х 0 .

В пространстве R n точек х = (x 1 , ..., х п) зададим множество точек G .

По определению х 0 = 0 1 , ..., х 0 п) есть внутренняя точка множества G , если существует открытый шар с центром в нем, полностью принадлежащий к G .

Множество G R n называется открытым, если все его точки внутренние.

Говорят, что функции

х 1 = φ 1 (t) , ..., х п = φ п (t) (a ≤ t ≤ b)

непрерывные на отрезке [a , b ], определяют непрерывную кривую в R n , соединяющую точки х 1 = 1 1 , ..., х 1 п) и х 2 = 2 1 , ..., х 2 п) , где х 1 1 = φ 1 (а) , ..., х 1 п = φ п (а) , х 2 1 = φ 1 (b) , ..., х 2 п = φ п (b) . Букву t называют параметром кривой.

Кафедра: Высшая математика

Реферат

по дисциплине «Высшая математика»

Тема: «Предел и непрерывность функций нескольких переменных»

Тольятти, 2008

Введение

Понятие функции одной переменной не охватывает все зависимости, существующие в природе. Даже в самых простых задачах встречаются величины, значения которых определяются совокупностью значений нескольких величин.

Для изучения подобных зависимостей вводится понятие функции нескольких переменных.


Понятие функции нескольких переменных

Определение. Величина u называется функцией нескольких независимых переменных (x , y , z , …, t ), если каждой совокупности значений этих переменных ставится в соответствие определенное значение величины u .

Если переменная является функцией от двух переменных х и у , то функциональную зависимость обозначают

z = f (x , y ).

Символ f определяет здесь совокупность действий или правило для вычисления значения z по данной паре значений х и у .

Так, для функции z = x 2 + 3xy

при х = 1 и у = 1 имеем z = 4,

при х = 2 и у = 3 имеем z = 22,

при х = 4 и у = 0 имеем z = 16 и т.д.

Аналогично называется величина u функцией от трех переменных x , y , z , если дано правило, как по данной тройке значений x , y иz вычислить соответствующее значение u :

u = F (x , y , z ).

Здесь символ F определяет совокупность действий или правило для вычисления значения u , соответствующего данным значениям x , y иz .

Так, для функции u = xy + 2xz 3yz

при х = 1, у = 1 и z = 1 имеем u = 0,

при х = 1, у = -2 и z = 3 имеем u = 22,

при х = 2, у = -1 и z = -2 имеем u = -16 и т.д.

Таким образом, если в силу некоторого закона каждой совокупности п чисел (x , y , z , …, t ) из некоторого множества Е ставится в соответствие определенное значение переменной u , то и u называется функцией от п переменных x , y , z , …, t , определенной на множестве Е , и обозначается

u = f (x , y , z , …, t ).

Переменные x , y , z , …, t называются аргументами функции, множество Е – областью определения функции.

Частным значением функции называется значение функции в некоторой точке М 0 (x 0 , y 0 , z 0 , …, t 0) и обозначается f (М 0) = f (x 0 , y 0 , z 0 , …, t 0).

Областью определения функции называется множество всех значений аргументов, которым соответствуют какие-либо действительные значения функции.

Функция двух переменных z = f (x , y ) в пространстве представляется некоторой поверхностью. То есть, когда точка с координатами х , у пробегает всю область определения функции, расположенную в плоскости хОу , соответствующая пространственная точка, вообще говоря, описывает поверхность.

Функцию трех переменных u = F (x , y , z ) рассматривают как функцию точки некоторого множества точек трехмерного пространства. Аналогично, функцию п переменных u = f (x , y , z , …, t ) рассматривают как функцию точки некоторого п -мерного пространства.

Предел функции нескольких переменных

Для того чтобы дать понятие предела функции нескольких переменных, ограничимся случаем двух переменных х и у . По определению функция f (x , y ) имеет предел в точке (х 0 , у 0), равный числу А , обозначаемый так:


(1)

(пишут еще f (x , y ) А при (x , y ) → (х 0 , у 0)), если она определена в некоторой окрестности точки (х 0 , у 0), за исключением, быть может, самой этой точки и если существует предел

(2)

какова бы ни была стремящаяся к (х 0 , у 0) последовательность точек (x k , y k ).

Так же, как в случае функции одной переменной, можно ввести другое эквивалентное определение предела функции двух переменных: функция f имеет в точке (х 0 , у 0) предел, равный А , если она определена в некоторой окрестности точки (х 0 , у 0) за исключением, быть может, самой этой точки, и для любого ε > 0 найдется такое δ > 0, что

| f (x , y ) A | < ε(3)

для всех (x , y ) , удовлетворяющих неравенствам

< δ. (4)

Это определение, в свою очередь, эквивалентно следующему: для любого ε > 0 найдется δ-окрестность точки (х 0 , у 0) такая, что для всех (x , y ) из этой окрестности, отличных от (х 0 , у 0), выполняется неравенство (3).

Так как координаты произвольной точки (x , y ) окрестности точки (х 0 , у 0) можно записать в виде х = х 0 + Δх , у = у 0 + Δу , то равенство (1) эквивалентно следующему равенству:

Рассмотрим некоторую функции, заданную в окрестности точки (х 0 , у 0), кроме, быть может, самой этой точки.

Пусть ω = (ω х , ω у ) – произвольный вектор длины единица (|ω| 2 = ω х 2 + ω у 2 = 1) и t > 0 – скаляр. Точки вида

(х 0 + t ω х , y 0 + t ω у ) (0 < t )

образуют луч, выходящий из (х 0 , у 0) в направлении вектора ω. Для каждого ω можно рассматривать функцию

f (х 0 + t ω х , y 0 + t ω у ) (0 < t < δ)

от скалярной переменной t , где δ – достаточно малое число.

Предел этой функции (одной переменной t )

f (х 0 + t ω х , y 0 + t ω у ),

если он существует, естественно называть пределом f в точке (х 0 , у 0) по направлению ω.

Пример 1. Функции


определены на плоскости (x , y ) за исключением точки х 0 = 0, у 0 = 0. Имеем (учесть, что

и ):

(для ε > 0 полагаем δ = ε/2 и тогда |f (x , y ) | < ε, если

< δ).

из которого видно, что предел φ в точке (0, 0) по разным направлениям вообще различен (единичный вектор луча y = kx , х > 0, имеет вид

).

Пример 2. Рассмотрим в R 2 функцию

(х 4 + у 2 ≠ 0).

Данная функция в точке (0, 0) на любой прямой y = kx , проходящей через начало координат, имеет предел, равный нулю:


при х → 0.

Однако эта функция не имеет предела в точки (0, 0), ибо при у = х 2

и

Будем писать

, если функция f определена в некоторой окрестности точки (х 0 , у 0), за исключением, быть может, самой точки (х 0 , у 0) и для всякого N > 0 найдется δ > 0 такое, что

|f (x , y ) | > N ,

коль скоро 0 <

< δ.

Можно также говорить о пределе f , когда х , у → ∞:

(5)

Например, в случае конечного числа А равенство (5) надо понимать в том смысле, что для всякого ε > 0 найдется такое N > 0, что для всех х , у , для которых |x | > N , |y | > N , функция f определена и имеет место неравенство

Рассмотрим плоскость и систему Oxy декартовых прямоугольных координат на ней (можно рассматривать и другие системы координат).

Из аналитической геометрии знаем, что каждой упорядоченной паре чисел (x, y) можно сопоставить единственную точкуM плоскости и наоборот, каждой точкеM плоскости соответствует единственная пара чисел.

Поэтому в дальнейшем, говоря о точке, мы будем часто подразумевать соответствующую ей пару чисел (x, y) и наоборот.

Определение 1.2 Множество пар чисел (x, y) , удовлетворяющих неравенствам, называется прямоугольником (открытым).

На плоскости он изобразится прямоугольником (рис. 1.2) со сторонами, параллельными осям координат, и с центром в точке M 0 (x 0 y 0 ) .

Прямоугольник принято обозначать следующим символом:

Введем важное для дальнейшего изложения понятие: окрестность точки.

Определение 1.3 Прямоугольной δ -окрестностью (дельта-окрестностью ) точкиM 0 (x 0 y 0 ) называется прямоугольник

с центром в точке M 0 и с одинаковыми по длине сторонами .

Определение 1.4 Круговой δ - окрестностью точкиM 0 (x 0 y 0 ) называется круг радиусаδ с центром в точкеM 0 , т. е. множество точекM(xy) , координаты которых удовлетворяют неравенству:

Можно ввести понятия окрестностей и других видов, но для целей математического анализа технических задач, в основном, используются лишь прямоугольные и круговые окрестности.

Введём следующее понятие предела функции двух переменных.

Пусть функция z = f (x, y) определена в некоторой областиζ иM 0 (x 0 y 0 ) - точка, лежащая внутри или на границе этой области.

Определение 1.5Конечное число A называетсяпределом функции f (x, y) при

если для любого положительного числа ε можно найти такое положительное числоδ , что неравенство

выполняется для всех точек М(х,у) из областиζ , отличных отM 0 (x 0 y 0 ) , координаты которых удовлетворяют неравенствам:

Смысл этого определения состоит в том, что значения функции f (х, у) как угодно мало отличаются от числа А в точках достаточно малой окрестности точкиМ 0 .

Здесь в основу определения положены прямоугольные окрестности М 0 . Можно было бы рассматривать круговые окрестности точкиМ 0 и тогда нужно было бы требовать выполнения неравенства

во всех точках М(х,у) областиζ , отличных отМ 0 и удовлетворяющих условию:

Расстояние между точками М иМ 0 .

Употребительны следующие обозначения предела:

Учитывая определение предела функции двух переменных, можно перенести основные теоремы о пределах для функций одной переменной на функции двух переменных.

Например, теоремы о пределе суммы, произведения и частного двух функций.

§3 Непрерывность функции двух переменных

Пусть функция z = f (x ,y) определена в точкеM 0 (x 0 y 0 ) и её окрестности.

Определение 1.6 Функция называется непрерывной в точке M 0 (x 0 y 0 ) , если

Если функция f (x ,y) непрерывна в точкеM 0 (x 0 y 0 ) , то

Поскольку

То есть, если функция f (x ,y) непрерывна в точкеM 0 (x 0 y 0 ) , то бесконечно малым приращениям аргументов в этой области соответствует бесконечно малое приращениеΔz функцииz .

Справедливо и обратное утверждение: если бесконечно малым приращениям аргументов соответствует бесконечно малое приращение функции, то функция непрерывна

Функцию, непрерывную в каждой точке области, называют непрерывной в области. Для непрерывных функций двух переменных, так же, как и для функции одной переменной, непрерывной на отрезке, справедливы основополагающие теоремы Вейерштрасса и Больцано - Коши.

Справка: Карл Теодор Вильгельм Вейерштрасс (1815 - 1897) - немецкий математик. Бернард Больцано (1781 - 1848) - чешский математик и философ. Огюстен Луи Коши (1789 - 1857) - французский математик, президент французской Академии наук (1844 - 1857).

Пример 1.4. Исследовать на непрерывность функцию

Данная функция определена при всех значениях переменных x иy , кроме начала координат, где знаменатель обращается в нуль.

Многочлен x 2 +y 2 непрерывен всюду, а значит и непрерывен корень квадратный из непрерывной функции.

Дробь же будет непрерывной всюду, кроме точек, где знаменатель равен нулю. То есть рассматриваемая функция непрерывна на всей координатной плоскости Оху , исключая начало координат.

Пример 1.5. Исследовать на непрерывность функцию z=tg(x,y) . Тангенс определен и непрерывен при всех конечных значениях аргумента, кроме значений, равных нечетному числу величиныπ/2 , т.е. исключая точки, где

При каждом фиксированном "k" уравнение (1.11) определяет гиперболу. Поэтому рассматриваемая функция является непрерывной функциейx и y , исключая точки, лежащие на кривых (1.11).

Для того чтобы дать понятие предела функции нескольких переменных, ограничимся случаем двух переменных х и у . По определению функция f (x, y) имеет предел в точке (х 0 , у 0), равный числу А , обозначаемый так:

(пишут еще f (x, y) >А при (x, y) > (х 0 , у 0)), если она определена в некоторой окрестности точки (х 0 , у 0), за исключением, быть может, самой этой точки и если существует предел

какова бы ни была стремящаяся к (х 0 , у 0) последовательность точек (x k , y k ).

Так же, как в случае функции одной переменной, можно ввести другое эквивалентное определение предела функции двух переменных: функция f имеет в точке (х 0 , у 0) предел, равный А , если она определена в некоторой окрестности точки (х 0 , у 0) за исключением, быть может, самой этой точки, и для любого е > 0 найдется такое д > 0, что

| f (x, y) - A | < е (3)

для всех (x, y)

0 < < д. (4)

Это определение, в свою очередь, эквивалентно следующему: для любого е > 0 найдется д-окрестность точки (х 0 , у 0) такая, что для всех (x, y ) из этой окрестности, отличных от (х 0 , у 0), выполняется неравенство (3).

Так как координаты произвольной точки (x, y ) окрестности точки (х 0 , у 0) можно записать в виде х = х 0 + Дх , у = у 0 + Ду , то равенство (1) эквивалентно следующему равенству:

Рассмотрим некоторую функции, заданную в окрестности точки (х 0 , у 0), кроме, быть может, самой этой точки.

Пусть щ = (щ х , щ у ) - произвольный вектор длины единица (|щ| 2 = щ х 2 + щ у 2 = 1) и t > 0 - скаляр. Точки вида (х 0 + t щ х , y 0 + t щ у ) (0 < t )

образуют луч, выходящий из (х 0 , у 0) в направлении вектора щ. Для каждого щ можно рассматривать функцию

f (х 0 + t щ х , y 0 + t щ у ) (0 < t < д)

от скалярной переменной t , где д - достаточно малое число.

Предел этой функции (одной переменной t )

f (х 0 + t щ х , y 0 + t щ у ),

f в точке (х 0 , у 0) по направлению щ.

Пример 1. Функции

определены на плоскости (x, y ) за исключением точки х 0 = 0, у 0 = 0. Имеем (учесть, что и):

(для е > 0 полагаем д = е/2 и тогда | f (x, y) | < е, если < д).

из которого видно, что предел ц в точке (0, 0) по разным направлениям вообще различен (единичный вектор луча y = kx , х > 0, имеет вид

Пример 2. Рассмотрим в R 2 функцию

(х 4 + у 2 ? 0).

Данная функция в точке (0, 0) на любой прямой y = kx , проходящей через начало координат, имеет предел, равный нулю:

при х > 0.

Однако эта функция не имеет предела в точки (0, 0), ибо при у = х 2

Будем писать, если функция f определена в некоторой окрестности точки (х 0 , у 0), за исключением, быть может, самой точки (х 0 , у 0) и для всякого N > 0 найдется д > 0 такое, что

| f (x, y) | > N ,

коль скоро 0 < < д.

Можно также говорить о пределе f , когда х , у > ?:

А равенство (5) надо понимать в том смысле, что для всякого е > 0 найдется такое N > 0, что для всех х , у , для которых |x | > N , |y | > N , функция f определена и имеет место неравенство

| f (x, y) - А | < е.

Справедливы равенства

где может быть х > ?, у > ?. При этом, как обычно, пределы (конечные) в их левых частях существуют, если существуют пределы f и ц.

Докажем для примера (7).

Пусть (x k , y k ) > (х 0 , у 0) ((x k , y k ) ? (х 0 , у 0)); тогда

Таким образом, предел в левой части (9) существует и равен правой части (9), а так как последовательность (x k , y k ) стремится к (х 0 , у 0) по любому закону, то этот предел равен пределу функции f (x, y) ц (x, y) в точке (х 0 , у 0).

Теорема. если функция f (x, y) имеет предел, не равный нулю в точке (х 0 , у 0), т.е.

то существует д > 0 такое, что для всех х , у , удовлетворяющих неравенствам

0 < < д, (10)

она удовлетворяет неравенству

Поэтому для таких (x, y)

т.е. имеет место неравенство (11). Из неравенства (12) для указанных (x, y) следует откуда при A> 0 и при

A < 0 (сохранение знака).

По определению функция f(x) = f (x 1 , …, x n ) = A имеет предел в точке

x 0 = , равный числу А , обозначаемый так:

(пишут еще f(x) > A (x > x 0)), если она определена на некоторой окрестности точки x 0 , за исключением, быть может, ее самой, и если существует предел

какова бы ни была стремящаяся к x 0 последовательность точек х k из указанной окрестности (k = 1, 2, ...), отличных от x 0 .

Другое эквивалентное определение заключается в следующем: функция f имеет в точке x 0 предел, равный А , если она определена в некоторой окрестности точки x 0 , за исключением, быть может, ее самой, и для любого е > 0 найдется такое д > 0, что

для всех х , удовлетворяющих неравенствам

0 < |x - x 0 | < д.

Это определение в свою очередь эквивалентно следующему: для любого е > 0 найдется окрестность U (x 0 ) точки x 0 такая, что для всех хU(x 0 ) , х ? x 0 , выполняется неравенство (13).

Очевидно, что если число А есть предел f(x) в x 0 , то А есть предел функции f(x 0 + h) от h в нулевой точке:

и наоборот.

Рассмотрим некоторую функцию f , заданную во всех точках окрестности точки x 0 , кроме, быть может, точки x 0 ; пусть щ = (щ 1 , ..., щ п ) - произвольный вектор длины единица (|щ| = 1) и t > 0 - скаляр. Точки вида x 0 + t щ (0 < t ) образуют выходящий из x 0 луч в направлении вектора щ. Для каждого щ можно рассматривать функцию

(0 < t < д щ)

от скалярной переменной t , где д щ есть число, зависящее от щ. Предел этой функции (от одной переменной t )

если он существует, естественно называть пределом f в точке x 0 по направлению вектора щ.

Будем писать, если функция f определена в некоторой окрестности x 0 , за исключением, быть может, x 0 , и для всякого N > 0 найдется д > 0 такое, что |f(x) | > N , коль скоро 0 < |x - x 0 | < д.

Можно говорить о пределе f , когда х > ?:

Например, в случае конечного числа А равенство (14) надо понимать в том смысле, что для всякого е > 0 можно указать такое N > 0, что для точек х , для которых |x | > N , функция f определена и имеет место неравенство.

Итак, предел функции f(x) = f(x 1 , ..., х п ) от п переменных определяется по аналогии так же, как для функции от двух переменных.

Таким образом, перейдем к определению предела функции нескольких переменных.

Число А называется пределом функции f(M) при М > М 0 , если для любого числа е > 0 всегда найдется такое число д > 0, что для любых точек М , отличных от М 0 и удовлетворяющих условию | ММ 0 | < д, будет иметь место неравенство | f(M) - А | < е.

Предел обозначают В случае функции двух переменных

Теоремы о пределах. Если функции f 1 (M) и f 2 (M) при М > М 0 стремятся каждая к конечному пределу, то:

Пример 1. Найти предел функции:

Решение. Преобразуем предел следующим образом:

Пусть y = kx , тогда

Пример 2. Найти предел функции:

Решение. Воспользуемся первым замечательным пределом Тогда

Пример 3. Найти предел функции:

Решение. Воспользуемся вторым замечательным пределом Тогда