Главная · Dns · Средняя частота отказов. Интенсивность отказов, общая формула вероятности безотказной работы. Наименование элемента и его параметры

Средняя частота отказов. Интенсивность отказов, общая формула вероятности безотказной работы. Наименование элемента и его параметры

Интенсивность отказов - отношение плотности распределения вероятности отказов к вероятности безотказной работы объекта:

где - плотность вероятности отказов и - вероятность безотказной работы .

Простыми словами, интенсивность отказов выражает шанс отказать в ближайший момент времени объекта (например, прибора), который уже проработал без отказов определённое время.

Статистически интенсивность отказов есть отношение числа отказавших образцов техники в единицу времени к среднему числу образцов, исправно работающих на интервале :

Где - среднее число исправно работающих образцов

на интервале .

Соотношение (1) для малых следует непосредственно из формулы вероятности безотказной работы (3)

и формулы плотности распределения безотказной работы (частоты отказов) (4)

На основе определения интенсивности отказов (1) имеет место равенство:

Интегрируя (5), получим:

Интенсивность отказов является основным показателем надёжности элементов сложных систем. Это объясняется следующими обстоятельствами:

  • надёжность многих элементов можно оценить одним числом, т.к. интенсивность отказа элементов - величина постоянная;
  • интенсивность отказов нетрудно получить экспериментально.

Опыт эксплуатации сложных систем показывает, что изменение интенсивности отказов большинства количества объектов описывается - образной кривой.

Время можно условно разделить на три характерных участка: 1. Период приработки. 2. Период нормальной эксплуатации. 3. Период старения объекта.

Период приработки объекта имеет повышенную интенсивность отказов, вызванную приработочными отказами, обусловленными дефектами производства, монтажа и наладки. Иногда с окончанием этого периода связывают гарантийное обслуживание объекта, когда устранение отказов производится изготовителем. В период нормальной эксплуатации интенсивность отказов практически остаётся постоянной, при этом отказы носят слуайный характер и появляются внезапно, прежде всего из-за случайных изменений нагрузки, несоблюдения условий эксплуатации, неблагоприятных внешних факторов и т.п. Именно этот период соответствует основному времени эксплуатации объекта. Возрастание интенсивности отказов относится к периоду старения объекта и вызвано увеличением числа отказов из-за износа, старения и других причин, связанных с длительной эксплуатацией. То есть вероятность отказа элемента, дожившего для момента в некотором последующем промежутке времени зависит от значений только на этом промежутке, а следовательно интенсивность отказов - локальный показатель надёжности элемента на данном промежутке времени.

Критерием надежности называется признак, по которому можно количественно оценить надежность различных устройств. К числу наиболее широко применяемых критериев надежности относятся:

Вероятность безотказной работы в течение определенного времени P (t );

Tср ;

Наработка на отказ tср ;

Частота отказов f (t ) или а (t );

Интенсивность отказов λ(t );

Параметр потока отказов ω(t);

Функция готовности K г(t );

Коэффициент готовности K г.

Характеристикой надежности следует называть количественное значение критерия надежности конкретного устройства. Выбор количественных характеристик надежности зависит от вида объекта.

2.1.2. Критерии надежности невосстанавливаемых объектов

Рассмотрим следующую модель работы устройства. Пусть в работе (на испытании) находится N 0 элементов и работа считается законченной, если все они отказали. Причем вместо отказавших элементов отремонтированные не ставятся. Тогда критериями надежности данных изделий являются:

Вероятность безотказной работы P (t );

Частота отказов f (t ) или a (t );

Интенсивность отказов λ(t );

Средняя наработка до первого отказа Tср .

Вероятностью безотказной работы называется вероятность того, что при определенных условиях эксплуатации в заданном интервале времени или в пределах заданной наработки не произойдет ни одного отказа.

Согласно определению:

P (t ) = P (T > t ), (4.2.1)

где: T - время работы элемента от его включения до первого отказа;

t - время, в течение которого определяется вероятность безотказной работы.

Вероятность безотказной работы по статистическим данным об отказах оценивается выражением:

где: N 0 - число элементов в начале работы (испытаний);

n (t ) - число отказавших элементов за время t ;

Статистическая оценка вероятности безотказной работы. При большом числе элементов (изделий) N 0 статистическая оценка P (t ) практически совпадает с вероятностью безотказной работы P (t ). На практике иногда более удобной характеристикой является вероятность отказа Q (t ).

Вероятностью отказа называется вероятность того, что при определенных условиях эксплуатации в заданном интервале времени возникает хотя бы один отказ. Отказ и безотказная работа являются событиями несовместными и противоположными, поэтому:

Частотой отказов по статистическим данным называется отношение числа отказавших элементов в единицу времени к первоначальному числу работающих (испытываемых) при условии, что все вышедшие из строя изделия не восстанавливаются. Согласно определению:

где: n t ) - число отказавших элементов в интервале времени от (t – Δt ) / 2 до (t + Δt ) / 2.

Частота отказов есть плотность вероятности (или закон распределения) времени работы изделия до первого отказа. Поэтому:

Интенсивностью отказов по статистическим данным называется отношение числа отказавших изделий в единицу времени к среднему числу изделий, исправно работающих в данный отрезок времени. Согласно определению

где: - среднее число исправно работающих элементов в интервале Δt ;

Ni - число изделий, исправно работающих в начале интервала Δt ;

Ni +1 - число элементов, исправно работающих в конце интервала Δt .

Вероятностная оценка характеристики λ(t ) находится из выражения:

λ(t ) = f (t ) / P (t ). (4.2.7)

Интенсивность отказов и вероятность безотказной работы связаны между

собой зависимостью:

Средней наработкой до первого отказа называется математическое ожидание времени работы элемента до отказа. Как математическое ожидание, Tср вычисляется через частоту отказов (плотность распределения времени безотказной работы):

Так как t положительно и P (0)=1, а P (∞) = 0, то:

По статистическим данным об отказах средняя наработка до первого отказа вычисляется по формуле

где: t i - время безотказной работы i -го элемента;

N 0 - число исследуемых элементов.

Как видно из формулы (4.2.11), для определения средней наработки до первого отказа необходимо знать моменты выхода из строя всех испытуемых элементов. Поэтому для вычисления средней наработки на отказ пользоваться указанной формулой неудобно. Имея данные о количестве вышедших из строя элементов ni в каждом i -м интервале времени, среднюю наработку до первого отказа лучше определять из уравнения:

В выражении (4.2.12) tсрi и m находятся по следующим формулам:

t cpi = (t i –1 + t i ) / 2, m = t k / Δt ,

где: t i –1 - время начала i -го интервала;

t i - время конца i -го интервала;

t k - время, в течение которого вышли из строя все элементы;

Δt = (t i –1 – t 1) - интервал времени.

Из выражений для оценки количественных характеристик надежности видно, что все характеристики, кроме средней наработки до первого отказа, являются функциями времени. Конкретные выражения для практической оценки количественных характеристик надежности устройств рассмотрены в разделе «Законы распределения отказов».

Рассмотренные критерии надежности позволяют достаточно полно оценить надежность невосстанавливаемых изделий. Они также позволяют оценить надежность восстанавливаемых изделий до первого отказа . Наличие нескольких критериев вовсе не означает, что всегда нужно оценивать надежность элементов по всем критериям.

Наиболее полно надежность изделий характеризуется частотой отказов f (t ) или a (t ). Это объясняется тем, что частота отказов является плотностью распределения, а поэтому несет в себе всю информацию о случайном явлении - времени безотказной работы.

Средняя наработка до первого отказа является достаточно наглядной характеристикой надежности. Однако применение этого критерия для оценки надежности сложной системы ограничено в тех случаях, когда:

Время работы системы гораздо меньше среднего времени безотказной работы;

Закон распределения времени безотказной работы не однопараметрический и для достаточно полной оценки требуются моменты высших порядков;

Система резервированная;

Интенсивность отказов не постоянная;

Время работы отдельных частей сложной системы разное.

Интенсивность отказов - наиболее удобная характеристика надежности простейших элементов, так как она позволяет более просто вычислять количественные характеристики надежности сложной системы.

Наиболее целесообразным критерием надежности сложной системы является вероятность безотказной работы . Это объясняется следующими особенностями вероятности безотказной работы:

Она входит в качестве сомножителя в другие, более общие характеристики системы, например, в эффективность и стоимость;

Характеризует изменение надежности во времени;

Может быть получена сравнительно просто расчетным путем в процессе проектирования системы и оценена в процессе ее испытания.

2.1.3. Критерии надежности восстанавливаемых объектов

Рассмотрим следующую модель работы. Пусть в работе находится N элементов и отказавшие элементы немедленно заменяются исправными (новыми или отремонтированными). Если не учитывать времени, потребного на восстановление системы, то количественными характеристиками надежности могут быть параметр потока отказов ω(t) и наработка на отказ tср .

Параметром потока отказов называется отношение числа отказавших изделий в единицу времени к числу испытываемых при условии, что все вышедшие из строя изделия заменяются исправными (новыми или отремонтированными). Статистическим определением служит выражение:

где: n t ) - число отказавших образцов в интервале времени от t – Δt /2

до t t /2;

N - число испытываемых элементов;

Δt - интервал времени.

Параметр потока отказов и частота отказов для ординарных потоков с ограниченным последействием связаны интегральным уравнением Вольтера второго рода:

По известной f (t ) можно найти все количественные характеристики надежности невосстанавливаемых изделий. Поэтому (4.2.14) является основным уравнением, связывающим количественные характеристики надежности невосстанавливаемых и восстанавливаемых элементов при мгновенном восстановлении.

Уравнение (4.2.14) можно записать в операторной форме:

Соотношения (4.2.15) позволяют найти одну характеристику через другую, если существуют преобразования Лапласа функций f (s ) и ω (s ) и обратные преобразования выражений (4.2.15).

Параметр потока отказов обладает следующими важными свойствами:

1) для любого момента времени, независимо от закона распределения времени безотказной работы, параметр потока отказов больше, чем частота отказов, т. е. ω(t ) > f (t );

2) независимо от вида функций f (t ) параметр потока отказов ω(t ) при t → ∞ стремится к 1/Tср . Это важное свойство параметра потока отказов означает, что при длительной эксплуатации ремонтируемого изделия поток его отказов, независимо от закона распределения времени безотказной работы, становится стационарным. Однако это вовсе не означает, что интенсивность отказов есть величина постоянная;

3) если λ(t ) - возрастающая функция времени, то λ(t ) > ω(t ) > f (t ), если λ(t ) - убывающая функция, то ω(t ) > λ(t ) > f (t );

4) при λ(t ) ≠ const параметр потока отказов системы не равен сумме параметров потока отказов элементов, т. е.:

Это свойство параметра потока отказов позволяет утверждать, что при вычислении количественных характеристик надежности сложной системы нельзя суммировать имеющиеся в настоящее время значения интенсивности отказов элементов, полученных по статистическим данным об отказах изделий в условиях эксплуатации, так как указанные величины являются фактически параметрами потока отказов;

5) при λ(t ) = λ= const параметр потока отказов равен интенсивности отказов

ω(t ) = λ(t ) = λ.

Из рассмотрения свойств интенсивности и параметра потока отказов видно, что эти характеристики различны.

В настоящее время широко используются статистические данные об отказах, полученные в условиях эксплуатации оборудования. При этом они часто обрабатываются таким образом, что приводимые характеристики надежности являются не интенсивностью отказов, а параметром потока отказов ω(t ). Это вносит ошибки при расчетах надежности. В ряде случаев они могут быть значительными.

Для получения интенсивности отказов элементов из статистических данных об отказах ремонтируемых систем необходимо воспользоваться формулой (4.2.6), для чего необходимо знать предысторию каждого элемента технологической схемы. Это может существенно усложнить методику сбора статистических данных об отказах. Поэтому целесообразно определять λ(t ) по параметру потока отказов ω(t ). Методика расчета сводится

к следующим вычислительным операциям:

По статистическим данным об отказах элементов ремонтируемых изделий и по формуле (4.2.13) вычисляется параметр потока отказов и строится гистограмма ω i (t );

Гистограмма заменяется кривой, которая аппроксимируется уравнением;

Находится преобразование Лапласа ω i (s ) функции ω i (t );

По известной ω i (s ) на основании (4.2.15) записывается преобразование Лапласа f i (s ) частоты отказов;

По известной f i (s ) находится обратное преобразование частоты отказов f i (t );

Находится аналитическое выражение для интенсивности отказов по формуле:

Строится график λ i (t ).

Если имеется участок, где λ i (t ) = λ i = const, то постоянное значение интенсивности отказов принимается для оценки вероятности безотказной работы. При этом считается справедливым экспоненциальный закон надежности.

Приведенная методика не может быть применена, если не удается найти по f (s ) обратное преобразование частоты отказов f (t ). В этом случае приходится применять приближенные методы решения интегрального уравнения (4.2.14).

Наработкой на отказ называется среднее значение времени между соседними отказами. Эта характеристика определяется по статистическим данным об отказах по формуле:

где: t i - время исправной работы элемента между (i – 1)-м и i -м отказами;

n - число отказов за некоторое время t .

Из формулы (4.2.18) видно, что в данном случае наработка на отказ определяется по данным испытания одного образца изделия. Если на испытании находится N образцов в течение времени t , то наработка на отказ вычисляется по формуле:

где: t ij - время исправной работы j -го образца изделия между (i – 1)-м и i -м отказом;

n j - число отказов за время tj -го образца.

Наработка на отказ является достаточно наглядной характеристикой надежности, поэтому она получила широкое распространение на практике. Параметр потока отказов и наработка на отказ характеризуют надежность восстанавливаемого изделия и не учитывают времени, необходимого на его восстановление. Поэтому они не характеризуют готовности устройства к выполнению своих функций в нужное время. Для этой цели вводятся такие критерии, как коэффициент готовности и коэффициент вынужденного простоя.

Коэффициентом готовности называется отношение времени исправной работы к сумме времен исправной работы и вынужденных простоев устройства, взятых за один и тот же календарный срок. Эта характеристика по статистическим данным определяется:

где: t р - суммарное время исправной работы изделия;

t п - суммарное время вынужденного простоя.

Времена и tп вычисляются по формулам:

где: t рi - время работы изделия между (i – 1)-м и i -м отказом;

t пi - время вынужденного простоя после i -го отказа;

n - число отказов (ремонтов) изделия.

Для перехода к вероятностной трактовке величины и tп заменяются математическими ожиданиями времени между соседними отказами и времени восстановления соответственно. Тогда:

K r = t cp / (t cp + t в ), (4.2.22)

где: t ср - наработка на отказ;

t в - среднее время восстановления.

Коэффициентом вынужденного простоя называется отношение времени вынужденного простоя к сумме времен исправной работы и вынужденных простоев изделия, взятых за один и тот же календарный срок.

Согласно определению:

K п = t p / (t p + t п ), (4.2.23)

или, переходя к средним величинам:

K п = t в / (t cp + t в ). (4.2.24)

Коэффициент готовности и коэффициент вынужденного простоя связаны между собой зависимостью:

K п = 1– K г . (4.2.25)

При анализе надежности восстанавливаемых систем обычно коэффициент готовности вычисляют по формуле:

K г =T cp / (T cp + t в ). (4.2.26)

Формула (4.2.26) верна только в том случае, если поток отказов простейший, и тогда t ср = T ср .

Часто коэффициент готовности, вычисленный по формуле (4.2.26), отождествляют с вероятностью того, что в любой момент времени восстанавливаемая система исправна. На самом деле указанные характеристики неравноценны и могут быть отождествлены при определенных допущениях.

Действительно, вероятность возникновения отказа ремонтируемой системы в начале эксплуатации мала. С ростом времени t эта вероятность возрастает. Это означает, что вероятность застать систему в исправном состоянии в начале эксплуатации будет выше, чем после истечения некоторого времени. Между тем на основании формулы (4.2.26) коэффициент готовности не зависит от времени работы.

Для выяснения физического смысла коэффициента готовности запишем формулу для вероятности застать систему в исправном состоянии. При этом рассмотрим наиболее простой случай, когда интенсивность отказов λ и интенсивность восстановления μ есть величины постоянные.

Предполагая, что при t = 0 система находится в исправном состоянии (P (0) = 1), вероятность застать систему в исправном состоянии определяется из выражений:

где λ = 1 /T cp ; μ = 1 / t в ; K г =T cp / (T cp + t в ).

Это выражение устанавливает зависимость между коэффициентом готовности системы и вероятностью застать ее в исправном состоянии в любой момент времени t .

Из (4.2.27) видно, что приt → ∞, т. е. практически коэффициент готовности имеет смысл вероятности застать изделие в исправном состоянии при установившемся процессе эксплуатации.

В некоторых случаях критериями надежности восстанавливаемых систем могут быть критерии невосстанавливаемых систем , например: вероятность работы, частота отказов, средняя наработка до первого отказа, интенсивность отказов . Такая необходимость возникает :

Когда имеет смысл оценивать надежность восстанавливаемой системы до первого отказа;

В случае, когда применяется резервирование с восстановлением отказавших резервных устройств в процессе работы системы, причем отказ всей резервированной системы не допускается.

Частотой отказов называется отношение числа отказавших образцов аппаратуры в единицу времени к числу образцов, первоначально установленных на испытание при условии, что отказавшие образцы не восстанавливаются и не заменяются исправными.

Так как число отказавших образцов в интервале времени может зависеть от расположения этого промежутка по оси времени, то чистота отказов является функцией времени. Эта характеристика и дальнейшем обозначается.

Интервал времени;

Число образцов аппаратуры, первоначально установленных на испытание

Выражение (10) является статистическим определением частоты отказов. Этой количественной характеристике надежности легко дать, вероятностное определение. Вычислим в выражении (10) , т. е. число образцов, отказавших в интервале.

Очевидно:

где N() -- число образцов, исправно работающих к моменту времени;

Число образцов, исправно работающих к моменту времени;

При достаточно большом числе образцов справедливы соотношения:

Подставляя (11) в (10) и учитывая (12), (13), получим:

Устремляя к нулю и переходя к пределу, получим:

или с учетом (4):

Из этого выражения видно, что частота отказов есть плотность распределения времени работы аппаратуры до ее отказа. Численно она равна взятой с обратным знаком производной от вероятности безотказной работы. Выражение (16) является вероятностным определением частоты отказов.

Таким образом, между частотой отказов, вероятностью безотказной работы и вероятностью отказов при любом законе распределения времени возникновения отказов существуют однозначные зависимости. Эти зависимости на основании (16) и (4) имеют вид:

Средней частотой отказов называется отношение числа отказавших образцов в единицу времени к числу испытываемых образцов при условии, что все образцы, вышедшие из строя, заменяются исправными (новыми или восстановленными).

Интенсивность отказов

Интенсивностью отказов называется отношение числа отказавших образцов аппаратуры в единицу времени к среднему числу образцов, исправно работающих в данный отрезок времени при условии, что отказавшие образцы не восстанавливаются и не заменяются исправными.

где - число отказавших образцов в интервале времени от до;

Интервал времени;

Среднее число исправно работающих образцов в интервале;

Число исправно работающих образцов в начале интервала;

Число исправно работающих образцов в конце интервала.

Выражение (19) является статистическим определением интенсивности отказов. Для вероятностного представления этой характеристики установим зависимость между интенсивностью отказов, вероятностью безотказной работы и частотой отказов.

Подставим в выражение (19) вместо его значение из (11) и (12). Тогда получим:

Учитывая, найдем:

Устремляем к нулю и переходя к пределу, получим:

Интегрируя, получим:

Среднее время безотказной работы

Среднее время безотказной работы называется математическое ожидание времени безотказной работы. Среднее время безотказной работы определяется зависимостью:

Для определения среднего времени безотказной работы из статических данных пользуются формулой:

где -время безотказной работы i-го образца;

N0 - число образцов, над которыми проводится испытание.

Подставим в выражение (25) вместо производную от безотказной работы с обратным знаком и выполним интегрирование по частям. Получим:

Так как не может иметь отрицательное значение, то заменится на 0, т.к. и, тогда:

Лекция № 3

Тема № 1. Показатели надежности ЭМС

Показатели надежности характеризуют такие важнейшие свойства систем, как безотказность , живучесть , отказоустойчивость , ремонтопригодность , сохраняемость , долговечность и являются количественной оценкой их технического состояния и среды, в которой они функционируют и эксплуатируются. Оценка показателей надежности сложных технических систем на различных этапах жизненного цикла используется для выбора структуры системы из множества альтернативных вариантов, назначения гарантийных сроков эксплуатации, выбора стратегии и тактики технического обслуживания, анализа последствий отказов элементов системы.

Аналитические методы оценки показателей надежности сложных технических систем управления и принятия решения базируются на положениях теории вероятности. В силу вероятностной природы отказов оценка показателей основана на использовании методов математической статистики. При этом статистический анализ проводится, как правило, в условиях априорной неопределенности относительно законов распределения случайных значений наработки системы, а также по выборкам ограниченного объема, содержащих данные о моментах отказа элементов системы при из испытаниях или в условиях эксплуатации.

Вероятность безотказной работы (ВБР) – это вероятность того, что при определенных условиях эксплуатации в заданном интервале времени не произойдет ни одного отказа. Вероятность P (t ) – функция, убывающая см. рис.1 причем,

ВБР по статистическим данным об отказах оценивается выражением

(1)

где – статистическая оценка ВБР; – число изделий в начале испытаний, при большом числе изделий статистическая оценка практически совпадает с вероятностью P (t ) ; –число отказавших изделий за время t .

Рисунок 1. Кривые вероятности безотказной работы и вероятности отказов

Вероятность отказа Q ( t ) – это вероятность того, что при определенных условиях эксплуатации в заданном интервале времени произойдет хотя бы один отказ. Отказ и безотказная работа – события противоположенные и несовместимые

(2)

Частота отказов a ( t ) – есть отношение отказавших изделий в единицу времени к первоначальному числу испытываемых изделий

(3)

где –число отказавших изделий в интервале времени Dt .

Частота отказов или плотность вероятности отказов может быть определена как производная по времени вероятности отказов

Знак (-) характеризует скорость снижения надежности во времени.

Средняя наработка до отказа – среднее значение продолжительности работы неремонтируемого устройства до первого отказа:

где – продолжительность работы (наработка) до отказа i -гo устройства; – число наблюдаемых устройств.

Пример. Наблюдения за эксплуатацией 10 электродвигателей выявили, что первый проработал до отказа 800 ч, второй – 1200 и далее соответственно; 900, 1400, 700, 950, 750, 1300, 850 и 1500 ч. Определить наработку двигателей до внезапного отказа,

Решение . По (5) имеем

Интенсивность отказов l ( t ) – условная плотность вероятности возникновения отказа, которая определяется как отношение числа отказавших изделий в единицу времени к среднему числу изделий, исправно работающих в данный отрезок времени

, (6)

где – число устройств, отказавших в период времени ; – число среднее число устройств, исправно работающих в период наблюдения; – период наблюдения.

Вероятность безотказной работы Р(t) через выразится

. (8)

Пример 1. При эксплуатации 100 трансформаторов в течение 10 лет произошло два отказа, причём каждый раз отказывал новый трансформатор. Определить интенсивность отказов трансформатора за период наблюдения.

Решение. По (6) имеем отк./год.

Пример2 . Изменение числа отказов BJI из-за производственной деятельности сторонних организаций по месяцам года представлено следующим образом:

Определить среднемесячную интенсивность отказов.

Решение. ; отк./ мес.

Ожидаемая расчетная интенсивность l = 7,0.

Средняя наработка на отказ – среднее значение наработки ремонтируемого устройства между отказами, определяемое как среднее арифметическое:

, (9)

где – наработка до первого, второго, n -го отказа; n – число отказов от момента начала эксплуатации до окончания наблюдения. Наработка на отказ, или среднее время безотказной работы, есть математическое ожидание :

. (10)

Пример. Трансформатор отказал, проработав около года. После устранения причины отказа он проработал еще три года и опять вышел из строя. Определить среднюю наработку трансформатора на отказ.

Решение . По (1.7) вычислим года.

Параметр потока отказов – среднее количество отказов ремонтируемого устройства в единицу времени, взятое для рассматриваемого момента времени:

(11)

где – число отказов i -го устройства по состоянию на рассматриваемые моменты времени – и t соответственно; N – число устройств; – рассматриваемый период работы, причём .

Отношение среднего числа отказов восстанавливаемого объекта за произвольно малую его наработку к значению этой наработки

Пример . Электротехническое устройство состоит из трех элементов. В течение первого года эксплуатации в первом элементе произошло два отказа, во втором – один, в третьем отказов не было. Определить параметр потока отказов.

Решение

Откуда по (1.8)

Среднее значение ресурса рассчитывают по данным эксплуатации или испытаний с использованием уже известного выражения для наработки:

.

Среднее время восстановления – среднее время вынужденного или регламентированного простоя, вызванного обнаружением и устранением одного отказа:

где – порядковый номер отказа; – среднее время обнаружения и устранения отказа.

Коэффициент готовности – вероятность того, что оборудование будет работоспособно в произвольно выбранный момент времени в промежутках между выполнениями планового технического обслуживания. При экспоненциальном законе распределения времени безотказной работы и времени восстановления коэффициент готовности

.

Коэффициент вынужденного простоя – это отношение времени вынужденного простоя к сумме времени исправной работы и вынужденных простоев.

Коэффициент технического использования – это отношение наработки оборудования в единицах времени за некоторый период эксплуатации к сумме этой наработки и времени всех простоев, вызванных, техническим обслуживанием и ремонтами за тот же период эксплуатации:

.

Кроме того [ГОСТ 27.002-83] определяет показатели долговечности , в терминах которых следует указывать вид действий после наступления предельного состояния объекта (например, средний ресурс до капитального ремонта; гамма-процентный ресурс до среднего ремонта и т.д.). Если предельное состояние обуславливает окончательное снятие объекта с эксплуатации, то показатели долговечности называются: полный средний ресурс (срок службы), полный гамма-процентный ресурс (срок службы), полный назначенный ресурс (срок службы).

Средний ресурс – математическое ожидание ресурса.

Гамма-процентный ресурс – наработка, в течение которой объект не достигнет предельного состояния с заданной вероятностью g, выраженной в процентах.

Назначенный ресурс – суммарная наработка объекта, при достижении которой применение по назначению должно быть прекращено.

Средний срок службы – математическое ожидание срока службы.

Гамма-процентный срок службы – календарная продолжительность от начала эксплуатации объекта, в течение которой он не достигнет предельного состояния с заданной вероятностью g, выраженной в процентах.

Назначенный срок службы – календарная продолжительность эксплуатации объекта, при достижении которой применение по назначению должно быть прекращено.

Показатели ремонтопригодности и сохраняемости определяются следующим образом.

Вероятность восстановления работоспособного состояния – это вероятность того, что время восстановления работоспособного состояния объекта не превысит заданного.

Среднее время восстановления работоспособного состо яния – это математическое ожидание времени восстановления работоспособного состояния.

Средний срок сохраняемости – это математическое ожидание срока сохраняемости.

Гамма-процентный срок сохраняемости – это срок сохраняемости, достигаемый объектом с заданной вероятностью , выраженной в процентах.

Интенсивность отказов () называется вероятность отказа не ремонтируемого изделия в единицу времени при условии, что отказ до этого момента не возникал. Предположим, что некоторый элемент проработал в течение интервала времени от 0 до t. Какова вероятность того, что этот элемент откажет на интервале .

А-событие безотказной работы от 0 до t. В-событие безотказной работы от t до t 1 .

Для того чтобы элемент смог безотказно работать на интервале он должен безотказно проработать на интервале 0 до t.

Р(АВ)=Р(А)*Р(В/А) (1)

Р(А) =Р(0,t) – вероятность безотказной работы элемента на интервале от 0 до t.

Р(В/А) = Р(t,t 1) – условная вероятность события В, что условие А имело место.

Р(В/А)= Р(t,t 1)=Р(АВ)/Р(А); Р(АВ)= Р(0,t 1).

0, t= 0,t+ t, t 1 ,

Р(t,t 1)= Р(0,t 1)/ Р(0,t) (2)

Р(t,t 1)= Р(t 1)/ Р(t) (2а)

Вероятность отказа элемента на интервале (t, t 1):

Равенство (3) может быть переписано в виде: . Умножим числитель и знаменатель (4) на при .

Введем обозначение - интенсивность отказа.

Из равенства (5) с учетом (6) получим: , .

Из (7) следует что интенсивность отказа есть отношение вероятности отказа на интервал () при . Интенсивность отказов определяемая (7) стремится к интенсивности отказа определяемая равенством (6). В соответствии (6) величина может быть определена из графика функции надежности как отношение численного значения тангенса угла наклона касательной к кривой к численной ординаты функции надежности.

Если известна интенсивность отказа элементов, то можно рассчитать вероятность работы любой сколь угодно сложной системы. Незнание функции для составляющих элементов исключает возможность определить вероятность безотказной работы.

Чем менее точно известно для элементов тем больше ошибки в расчете безотказности изделия.

Интенсивность отказов может быть определена опытным путем на основе испытаний изделий.

Предположим Р(t) – есть отношение: , - число элементов, оставшихся безотказными. Тогда на малом отрезке и большом числе испытуемых образцов N.

где -число отказавших элементов на интервале времени, n(t)-число неотказавших элементов.

Экспериментальная кривая заменяется плавной кривой. Чем больше N и меньше интервал времени , тем точнее экспериментальная характеристика и заменяющая её плавная кривая, которая отражает действительную картину интенсивности отказов.

Эргодическая теория. На основании известной из теории вероятности эргодической теории среднее значение (мат. ожидание) при совокупном наблюдении ……….равна среднему значению по времени, определенной за одной системой (элементов).


В данном случае это означает, что изменение интенсивности отказа по времени для 1-го отдельно взятого элемента может быть описано тем же самым законом что и интенсивность, полученная при испытании однотипных элементов большой группы.

Вид функции показан 3 характерных участка:

I – участок приработки; II – нормальной эксплуатации; III – участок износовых отказов, могут возникать внезапные отказы.

Деление на участки является условным но оно позволяет рассмотреть работу элементов по участкам и для каждого участка применять свой закон распределения.

Общая формула безотказной работы позволяет определить Р если известна интенсивность отказа.

Если требуется определить вероятность безотказной работы . Равенство (12) справедливо при условии, что в момент времени t 1 элемент находился в работоспособном состоянии.